首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Testosterone (T) supplementation in men induces muscle fiber hypertrophy. We hypothesized that T-induced increase in muscle fiber size is associated with a dose-dependent increase in satellite cell number. We quantitated satellite cell and myonuclear number by using direct counting and spatial orientation methods in biopsies of vastus lateralis obtained at baseline and after 20 wk of treatment with a gonadotropin-releasing hormone agonist and a 125-, 300-, or 600-mg weekly dose of T enanthate. T administration was associated with a significant increase in myonuclear number in men receiving 300- and 600-mg doses. The posttreatment percent satellite cell number, obtained by direct counting, differed significantly among the three groups (ANCOVA P < 0.000001); the mean posttreatment values (5.0 and 15.0%) in men treated with 300- and 600-mg doses were greater than baseline (2.5 and 2.5%, respectively, P < 0.05 vs. baseline). The absolute satellite cell number measured by spatial orientation at 20 wk (1.5 and 4.0/mm) was significantly greater than baseline (0.3 and 0.6/mm) in men receiving the 300- and 600-mg doses (P < 0.05). The change in percent satellite cell number correlated with changes in total (r = 0.548) and free T concentrations (r = 0.468). Satellite cell and mitochondrial areas were significantly higher and the nuclear-to-cytoplasmic ratio lower after treatment with 300- and 600-mg doses. We conclude that T-induced muscle fiber hypertrophy is associated with an increase in satellite cell number, a proportionate increase in myonuclear number, and changes in satellite cell ultrastructure.  相似文献   

2.
The cross-sectional area (CSA), myonuclear number per mm of fiber length, and myonuclear domain (cytoplasmic volume/myonucleus) of mechanically isolated single fibers from biopsies of the soleus muscle of 5 vivarium control, 3 flight simulation and 2 flight (BION 11) Rhesus monkeys (Macaca [correction of Macacca] mulatta) were determined using confocal microscopy before and after a 14-day experimental period. Simulation monkeys were confined in chairs placed in capsules identical to those used during the flight. Fibers were classified as type I, type II or hybrid (containing both types I and II) based on myosin heavy chain (MHC) gel electrophoresis. A majority of the fibers sampled contained only type I MHC, i.e. 89, 62 and 68% for the control, simulation and flight groups, respectively. Most of the remaining fibers were hybrids, i.e. 8, 36 and 32% for the same groups. There were no significant pre-post differences in the fiber type composition for any of the experimental groups. There also were no significant pre-post differences in fiber CSA, myonuclear number or myonuclear domain. There was, however, a tendency for the fibers in the post-flight biopsies to have a smaller mean CSA and myonuclear domain (approximately 10%, p=0.07) than the fibers in the pre-flight biopsy. The combined mean cytoplasmic volume/myonucleus for all muscle fiber phenotypes in the Rhesus soleus muscle was approximately 25,000 micrometers3 and there were no differences in pre-post samples for the control and simulated groups. The cytoplasmic domains tended to be lower (p=0.08) after than before flight. No phenotype differences in cytoplasmic domains were observed. These data suggest that after a relatively short period of actual spaceflight, modest fiber atrophy occurs in the soleus muscle fibers without a concomitant change in myonuclear number.  相似文献   

3.
Satellite cells (SC) are essential for skeletal muscle growth and repair. Because sarcopenia is associated with type II muscle fiber atrophy, we hypothesized that SC content is specifically reduced in the type II fibers in the elderly. A total of eight elderly (E; 76 +/- 1 yr) and eight young (Y; 20 +/- 1 yr) healthy males were selected. Muscle biopsies were collected from the vastus lateralis in both legs. ATPase staining and a pax7-antibody were used to determine fiber type-specific SC content (i.e., pax7-positive SC) on serial muscle cross sections. In contrast to the type I fibers, the proportion and mean cross-sectional area of the type II fibers were substantially reduced in E vs. Y. The number of SC per type I fiber was similar in E and Y. However, the number of SC per type II fiber was substantially lower in E vs. Y (0.044 +/- 0.003 vs. 0.080 +/- 0.007; P < 0.01). In addition, in the type II fibers, the number of SC relative to the total number of nuclei and the number of SC per fiber area were also significantly lower in E. This study is the first to show type II fiber atrophy in the elderly to be associated with a fiber type-specific decline in SC content. The latter is evident when SC content is expressed per fiber or per fiber area. The decline in SC content might be an important factor in the etiology of type II muscle fiber atrophy, which accompanies the loss of skeletal muscle with aging.  相似文献   

4.
5.
Fiber type composition of the vastus lateralis muscle of young men and women.   总被引:11,自引:0,他引:11  
This study presents data collected over the past 10 years on the muscle fiber type composition of the vastus lateralis muscle of young men and women. Biopsies were taken from the vastus lateralis muscle of 55 women (21.2+/-2.2 yr) and 95 men (21.5+/-2.4 yr) who had volunteered to participate in various research projects. Six fiber types (I, IC, IIC, IIA, IIAB, and IIB) were classified using mATPase histochemistry, and cross-sectional area was measured for the major fiber types (I, IIA, and IIB). Myosin heavy chain (MHC) content was determined electrophoretically on all of the samples from the men and on 26 samples from the women. With the exception of fiber Type IC, no significant differences were found between men and women for muscle fiber type distribution. The vastus lateralis muscle of both the men and women contained approximately 41% I, 1% IC, 1% IIC, 31% IIA, 6% IIAB, and 20% IIB. However, the cross-sectional area of all three major fiber types was larger for the men compared to the women. In addition, the Type IIA fibers were the largest for the men, whereas the Type I fibers tended to be the largest for the women. Therefore, gender differences were found with regard to the area occupied by each specific fiber type: IIA>I>IIB for the men and I>IIA>IIB for the women. These data establish normative values for the mATPase-based fiber type distribution and sizes in untrained young men and women.  相似文献   

6.
The effects of 10 wk of functional overload (FO), with and without daily treadmill endurance training, on the cross-sectional area, myonuclear number, and myonuclear domain size of mechanically isolated single fiber segments of the adult rat plantaris were determined. The fibers were typed on the basis of high-resolution gel electrophoresis for separation of specific myosin heavy chain (MHC) isoforms and grouped as type I(+) (containing some type I MHC with or without any combination of fast MHCs), type IIa(+) (containing some type IIa with or without some type IIx and/or IIb but no type I MHC), and type IIx/b (containing only type IIx and/or IIb MHCs). Type I(+) fibers had a higher myonuclear number than did both fast types of fibers in the control and FO, but not in the FO and treadmill trained, rats. All fiber types in both FO groups had a significantly larger (36-90%) cross-sectional area and a significantly higher (61-109%) myonuclear number than did control. The average myonuclear domain size of each fiber type was similar among the three groups, except for a smaller domain size in the type IIx/b fibers of the FO compared with control. In general, these data indicate that during hypertrophy the number of myonuclei increase proportionally to the increase in fiber volume. The maintenance of myonuclear domain size near control values suggests that regulatory mechanisms exist that ensure a tight coupling between the quantity of genetic machinery and the protein requirements of a fiber.  相似文献   

7.
Considerable heterogeneity exists in the anabolic response to androgen administration; however, the factors that contribute to variation in an individual's anabolic response to androgens remain unknown. We investigated whether testosterone dose and/or any combination of baseline variables, including concentrations of hormones, age, body composition, muscle function, and morphometry or polymorphisms in androgen receptor could explain the variability in anabolic response to testosterone. Fifty-four young men were treated with a long-acting gonadotropin-releasing hormone (GnRH) agonist and one of five doses (25, 50, 125, 300, or 600 mg/wk) of testosterone enanthate (TE) for 20 wk. Anabolic response was defined as a change in whole body fat-free mass (FFM) by dual-energy X-ray absorptiometry (DEXA), appendicular FFM (by DEXA), and thigh muscle volume (by magnetic resonance imaging) during TE treatment. We used univariate and multivariate analysis to identify the subset of baseline measures that best explained the variability in anabolic response to testosterone supplementation. The three-variable model of TE dose, age, and baseline prostate-specific antigen (PSA) level explained 67% of the variance in change in whole body FFM. Change in appendicular FFM was best explained (64% of the variance) by the linear combination of TE dose, baseline PSA, and leg press strength, whereas TE dose, log of the ratio of luteinizing hormone to testosterone concentration, and age explained 66% of the variation in change in thigh muscle volume. The models were further validated by using Ridge analysis and cross-validation in data subsets. Only the model using testosterone dose, age, and PSA was a consistent predictor of change in FFM in subset analyses. The length of CAG tract was only a weak predictor of change in thigh muscle volume and lean body mass. Hence, the anabolic response of healthy, young men to exogenous testosterone administration can largely be predicted by the testosterone dose.  相似文献   

8.
The purpose of the present investigation was to establish an in vitro mammalian skeletal muscle model to study acute alterations in resting skeletal muscle cell volume. Isolated, whole muscles [soleus and extensor digitorum longus (EDL)] were dissected from Long-Evans rats and incubated for 60 min in Sigma medium 199 (1 g of resting tension, bubbled with 95% O(2)-5% O(2), 30 +/- 2 degrees C, and pH 7.4). Medium osmolality was altered to simulate hyposmotic (190 +/- 10 mmol/kg) or hyperosmotic conditions (400 +/- 10 mmol/kg), whereas an isosmotic condition (290 +/- 10 mmol/kg) served as a control. After incubation, relative water content of the muscle decreased with hyperosmotic and increased with hyposmotic condition in both muscle types (P < 0.05). The cross-sectional area of soleus type I and type II fibers increased (P < 0.05) in hyposmotic, whereas hyperosmotic exposure led to no detectable changes. The EDL type II fiber area decreased in the hyperosmotic condition and increased after hyposmotic exposure, whereas no change was observed in EDL type I fibers. Furthermore, exposure to the hyperosmotic condition in both muscle types resulted in decreased muscle ATP and phosphocreatine (P < 0.05) contents and increased creatine and lactate contents (P < 0.05) compared with control and hyposmotic conditions. This isolated skeletal muscle model proved viable and demonstrated that altering extracellular osmolality could cause acute alterations in muscle water content and resting muscle metabolism.  相似文献   

9.
The purpose of this investigation was to understand how 14 days of weightlessness alters the cellular properties of individual slow- and fast-twitch muscle fibers in the rhesus monkey. The diameter of the soleus (Sol) type I, medial gastrocnemius (MG) type I, and MG type II fibers from the vivarium controls averaged 60 +/- 1, 46 +/- 2, and 59 +/- 2 microm, respectively. Both a control 1-G capsule sit (CS) and spaceflight (SF) significantly reduced the Sol type I fiber diameter (20 and 13%, respectively) and peak force, with the latter declining from 0.48 +/- 0.01 to 0.31 +/- 0.02 (CS group) and 0.32 +/- 0.01 mN (SF group). When the peak force was expressed as kiloNewtons per square meter (kN/m(2)), only the SF group showed a significant decline. This group also showed a significant 15% drop in peak fiber stiffness that suggests that fewer cross bridges were contracting in parallel. In the MG, SF but not CS depressed the type I fiber diameter and force. Additionally, SF significantly depressed absolute (mN) and relative (kN/m(2)) force in the fast-twitch MG fibers by 30% and 28%, respectively. The Ca(2+) sensitivity of the type I fiber (Sol and MG) was significantly reduced by growth but unaltered by SF. Flight had no significant effect on the mean maximal fiber shortening velocity in any fiber type or muscle. The post-SF Sol type I fibers showed a reduced peak power and, at peak power, an elevated velocity and decreased force. In conclusion, CS and SF caused atrophy and a reduced force and power in the Sol type I fiber. However, only SF elicited atrophy and reduced force (mN) in the MG type I fiber and a decline in relative force (kN/m(2)) in the Sol type I and MG type II fibers.  相似文献   

10.
We investigated the effects of 6 mo of near-physiological testosterone administration to older men on skeletal muscle function and muscle protein metabolism. Twelve older men (> or =60 yr) with serum total testosterone concentrations <17 nmol/l (480 ng/dl) were randomly assigned in double-blind manner to receive either placebo (n = 5) or testosterone enanthate (TE; n = 7) injections. Weekly intramuscular injections were given for the 1st mo to establish increased blood testosterone concentrations at 1 mo and then changed to biweekly injections until the 6-mo time point. TE doses were adjusted to maintain nadir serum testosterone concentrations between 17 and 28 nmol/l. Lean body mass (LBM), muscle volume, prostate size, and urinary flow were measured at baseline and at 6 mo. Protein expression of androgen receptor (AR) and insulin-like growth factor I, along with muscle strength and muscle protein metabolism, were measured at baseline and at 1 and 6 mo of treatment. Hematological parameters were followed monthly throughout the study. Older men receiving testosterone increased total and leg LBM, muscle volume, and leg and arm muscle strength after 6 mo. LBM accretion resulted from an increase in muscle protein net balance, due to a decrease in muscle protein breakdown. TE treatment increased expression of AR protein at 1 mo, but expression returned to pre-TE treatment levels by 6 mo. IGF-I protein expression increased at 1 mo and remained increased throughout TE administration. We conclude that physiological and near-physiological increases of testosterone in older men will increase muscle protein anabolism and muscle strength.  相似文献   

11.
The oxidative capacity and cross-sectional area of muscle fibers were compared between the costal and crural regions of the cat diaphragm and across the abdominal-thoracic extent of the muscle. Succinate dehydrogenase (SDH) activity of individual fibers was quantified using a microphotometric procedure implemented on an image-processing system. In both costal and crural regions, population distributions of SDH activities were unimodal for both type I and II fibers. The continuous distribution of SDH activities for type II fibers indicated that no clear threshold exists for the subclassification of fibers based on differences in oxidative capacity (e.g., the classification of fast-twitch glycolytic and fast-twitch oxidative glycolytic fiber types). No differences in either SDH activity or cross-sectional area were noted between fiber populations of the costal and crural regions. Differences in SDH activity and cross-sectional area were noted, however, between fiber populations located on the abdominal and thoracic sides of the costal region. Both type I and II fibers on the abdominal side of the costal diaphragm were larger and more oxidative than comparable fibers on the thoracic side.  相似文献   

12.
Previous studies of endurance exercise training in older men and women generally have found only minimal skeletal muscle adaptations to training. To evaluate the possibility that this may have been due to an inadequate training stimulus, we studied 23 healthy older (64 +/- 3 yr) men and women before and after they had trained by walking/jogging at 80% of maximal heart rate for 45 min/day 4 days/wk for 9-12 mo. This training program resulted in a 23% increase in maximal O2 consumption. Needle biopsy samples of the lateral gastrocnemius muscle were obtained before and after training and analyzed for selected histochemical and enzymatic characteristics. The percentage of type I muscle fibers did not change with training. The percentage of type IIb fibers, however, decreased from 19.1 +/- 9.1 to 15.1 +/- 8.1% (P less than 0.001), whereas the percentage of type IIa fibers increased from 22.1 +/- 7.7 to 29.6 +/- 9.1% (P less than 0.05). Training also induced increases in the cross-sectional area of both type I (12%; P less than 0.001) and type IIa fibers (10%; P less than 0.05). Capillary density increased from 257 +/- 43 capillaries/mm2 before training to 310 +/- 48 capillaries/mm2 after training (P less than 0.001) because of increases in the capillary-to-fiber ratio and in the number of capillaries in contact with each fiber. Lactate dehydrogenase activity decreased by 21% (P less than 0.001), whereas the activities of the mitochondrial enzymes succinate dehydrogenase, citrate synthase, and beta-hydroxyacyl-CoA dehydrogenase increased by 24-55% in response to training (P less than 0.001-0.05).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
Changes in the contractile and fatigue properties of the cat diaphragm muscle were examined during the first 6 wk of postnatal development. Both twitch contraction time and half-relaxation time decreased progressively with age. Correspondingly, the force-frequency curve was shifted to the left early in development compared with adults. The ratio of peak twitch force to maximum tetanic force decreased with age. Fatigue resistance of the diaphragm was highest at birth and then progressively decreased with age. At birth, most diaphragm muscle fibers stained darkly for myofibrillar adenosinetriphosphatase after alkaline preincubation and thus would be classified histochemically as type II. During subsequent postnatal development, the proportion of type I fibers (lightly stained for adenosinetriphosphatase) increased while the number of type II fibers declined. At birth, type I fibers were larger than type II fibers. The size of both fiber types increased with age, but the increase in cross-sectional area was greater for type II fibers. On the basis of fiber type proportions and mean cross-sectional areas, type I fibers contributed 15% of total muscle mass at birth and 25% in adults. Thus postnatal changes in diaphragm contractile and fatigue properties cannot be attributed to changes in the relative contribution of histochemically classified type I and II fibers. However, the possibility that these developmental changes in diaphragm contractile and fatigue properties correlated with the varying contractile protein composition of muscle fibers was discussed.  相似文献   

14.
Muscle fibers composition was investigated in vastus lateralis muscles of 103 skaters. In the total population of skaters muscle fibers composition was as follows: muscle fibers, type I--in 54 +/- 2%, muscle fibers, type II A--in 35 +/- 1% and muscle fibers, type II B--in 11 +/- 1%. 13 +/- 8% muscle fibers, type I; 1.56 +/- 6% muscle fibers, type II A and 31 +/- 7% muscle fibers, type II B were observed in the muscles of sprinters, while the muscles of long-distance skaters contained 60 +/- 4%, 33 +/- 4% and 7 +/- 2% muscle fibers, respectively.  相似文献   

15.
Effect of swim exercise training on human muscle fiber function   总被引:1,自引:0,他引:1  
This study examined the effect of a typical collegiate swim-training program and an intensified 10-day training period on the peak tension (Po), negative log molar Ca2+ concentration (pCa)-force, and maximal shortening speed (Vmax) of the slow-twitch type I and fast-twitch type II fibers of the deltoid muscle. Over a 10-wk period, the swimmers averaged 4,266 +/- 264 m/day swimming intermittent bouts of front crawl, kicking, or pulling. The training program induced an almost twofold increase in the mitochondrial marker enzyme citrate synthase. Po of the single fibers was not altered by either the training or 10-day intensive training programs, and no significant differences were observed in the Po (kg/cm2) of type I compared with the type II fibers. The type II fiber diameters were significantly larger than the type I fibers (94 +/- 4 vs. 80 +/- 2 microns), and although fiber diameters were unaffected by the training, the 10-day intensive training significantly reduced the type II fiber diameter. The type I fibers from the trained swimmers showed pCa-force curves shifted to the right such that higher free Ca2+ levels were required to elicit a given percent of Po (for values less than 0.5 Po). The activation threshold (pCa) for the onset of tension and the pCa required to elicit one-half maximal tension were not altered by the training in either fiber type. Fiber Vmax (measured by the slack test) was fivefold higher in type II compared with type I fibers (4.85 +/- 0.50 vs. 0.86 +/- 0.04 fiber lengths/s). The exercise-training program significantly increased and decreased the Vmax of the slow and fast fibers, respectively. The 10 days of intensified training produced a further significant decrease in the Vmax of the type II fibers. After a period of detraining, the Vmax of both fiber types returned to the control level. The force-velocity relation was not significantly altered in either fiber type by the swim training; however, the intensified training significantly depressed the velocity of the type II fiber at all loads studied. The Vmax changes with exercise training are likely explained by an exercise-induced expression of fast myosin in slow fibers and slow myosin in fast fibers.  相似文献   

16.
The purpose of this study was to examine single cell contractile mechanics of skeletal muscle before and after 12 wk of progressive resistance training (PRT) in older men (n = 7; age = 74 +/- 2 yr and weight = 75 +/- 5 kg). Knee extensor PRT was performed 3 days/wk at 80% of one-repetition maximum. Muscle biopsy samples were obtained from the vastus lateralis before and after PRT (pre- and post-PRT, respectively). For analysis, chemically skinned single muscle fibers were studied at 15 degrees C for peak tension [the maximal isometric force (P(o))], unloaded shortening velocity (V(o)), and force-velocity parameters. In this study, a total of 199 (89 pre- and 110 post-PRT) myosin heavy chain (MHC) I and 99 (55 pre- and 44 post-PRT) MHC IIa fibers were reported. Because of the minimal number of hybrid fibers identified post-PRT, direct comparisons were limited to MHC I and IIa fibers. Muscle fiber diameter increased 20% (83 +/- 1 to 100 +/- 1 microm) and 13% (86 +/- 1 to 97 +/- 2 microm) in MHC I and IIa fibers, respectively (P < 0.05). P(o) was higher (P < 0.05) in MHC I (0.58 +/- 0.02 to 0.90 +/- 0.02 mN) and IIa (0.68 +/- 0.02 to 0.85 +/- 0.03 mN) fibers. Muscle fiber V(o) was elevated 75% (MHC I) and 45% (MHC IIa) after PRT (P < 0.05). MHC I and IIa fiber power increased (P < 0.05) from 7.7 +/- 0.5 to 17.6 +/- 0.9 microN. fiber lengths. s(-1) and from 25.5 to 41.1 microN. fiber lengths. s(-1), respectively. These data indicate that PRT in elderly men increases muscle cell size, strength, contractile velocity, and power in both slow- and fast-twitch muscle fibers. However, it appears that these changes are more pronounced in the MHC I muscle fibers.  相似文献   

17.
Ohira T  Terada M  Kawano F  Nakai N  Ogura A  Ohira Y 《PloS one》2011,6(6):e21044
Response of adductor longus (AL) muscle to gravitational unloading and reloading was studied. Male Wistar Hannover rats (5-wk old) were hindlimb-unloaded for 16 days with or without 16-day ambulation recovery. The electromyogram (EMG) activity in AL decreased after acute unloading, but that in the rostral region was even elevated during continuous unloading. The EMG levels in the caudal region gradually increased up to 6th day, but decreased again. Approximately 97% of fibers in the caudal region were pure type I at the beginning of experiment. Mean percentage of type I fibers in the rostral region was 61% and that of type I+II and II fiber was 14 and 25%, respectively. The percent type I fibers decreased and de novo appearance of type I+II was noted after unloading. But the fiber phenotype in caudal, not rostral and middle, region was normalized after 16-day ambulation. Pronounced atrophy after unloading and re-growth following ambulation was noted in type I fibers of the caudal region. Sarcomere length in the caudal region was passively shortened during unloading, but that in the rostral region was unchanged or even stretched slightly. Growth-associated increase of myonuclear number seen in the caudal region of control rats was inhibited by unloading. Number of mitotic active satellite cells decreased after unloading only in the caudal region. It was indicated that the responses of fiber properties in AL to unloading and reloading were closely related to the region-specific neural and mechanical activities, being the caudal region more responsive.  相似文献   

18.
The purpose of this study was to investigate whole muscle and single muscle fiber adaptations in very old men in response to progressive resistance training (PRT). Six healthy independently living old men (82 +/- 1 yr; range 80-86 yr, 74 +/- 4 kg) resistance-trained the knee extensors (3 sets, 10 repetitions) at approximately 70% one repetition maximum 3 days/wk for 12 wk. Whole thigh muscle cross-sectional area (CSA) was assessed before and after PRT using computed tomography (CT). Muscle biopsies were obtained from the vastus lateralis before and after the PRT program. Isolated myosin heavy chain (MHC) I and IIa single muscle fibers (n = 267; 142 pre; 125 post) were studied for diameter, peak tension, shortening velocity, and power. An additional set of isolated single muscle fibers (n = 2,215; 1,202 pre; 1,013 post) was used to identify MHC distribution. One repetition maximum knee extensor strength increased (P < 0.05) 23 +/- 4 kg (56 +/- 4 to 79 +/- 7 kg; 41%). Muscle CSA increased (P < 0.05) 3 +/- 1 cm2 (120 +/- 7 to 123 +/- 7 cm2; 2.5%). Single muscle fiber contractile function and MHC distribution were unaltered with PRT. These data indicate limited muscle plasticity at the single-muscle fiber level with a resistance-training program among the very old. The minor increases in whole muscle CSA coupled with the static nature of the myocellular profile indicate that the strength gains were primarily neurological. These data contrast typical muscle responses to resistance training in young ( approximately 20 yr) and old ( approximately 70 yr) humans and indicate that the physiological regulation of muscle remodeling is adversely modified in the oldest old.  相似文献   

19.
Isometric force production and ATPase activity were determined simultaneously in single human skeletal muscle fibers (n = 97) from five healthy volunteers and nine patients with chronic heart failure (CHF) at 20 degrees C. The fibers were permeabilized by means of Triton X-100 (1% vol/vol). ATPase activity was determined by enzymatic coupling of ATP resynthesis to the oxidation of NADH. Calcium-activated actomyosin (AM) ATPase activity was obtained by subtracting the activity measured in relaxing (pCa = 9) solutions from that obtained in maximally activating (pCa = 4.4) solutions. Fiber type was determined on the basis of myosin heavy chain isoform composition by polyacrylamide SDS gel electrophoresis. AM ATPase activity per liter cell volume (+/-SE) in the control and patient group, respectively, amounted to 134 +/- 24 and 77 +/- 9 microM/s in type I fibers (n = 11 and 16), 248 +/- 17 and 188 +/- 13 microM/s in type IIA fibers (n = 14 and 32), 291 +/- 29 and 126 +/- 21 microM/s in type IIA/X fibers (n = 3 and 5), and 325 +/- 32 and 205 +/- 21 microM/s in type IIX fibers (n = 7 and 9). The maximal isometric force per cross-sectional area amounted to 64 +/- 7 and 43 +/- 5 kN/m(2) in type I fibers, 86 +/- 11 and 58 +/- 4 kN/m(2) in type IIA fibers, 85 +/- 6 and 42 +/- 9 kN/m(2) in type IIA/X fibers, and 90 +/- 5 and 59 +/- 5 kN/m(2) in type IIX fibers in the control and patient group, respectively. These results indicate that, in CHF patients, significant reductions occur in isometric force and AM ATPase activity but that tension cost for each fiber type remains the same. This suggests that, in skeletal muscle from CHF patients, a decline in density of contractile proteins takes place and/or a reduction in the rate of cross-bridge attachment of approximately 30%, which exacerbates skeletal muscle weakness due to muscle atrophy.  相似文献   

20.
Testosterone-induced development of the rat levator ani muscle   总被引:5,自引:0,他引:5  
The perinatal development of the levator ani (LA) muscle in male and female rats was investigated by measuring the total number of muscle units (MU) (i.e., mononucleate cells, clustered or independent myotubes, and muscle fibers) in transverse semithin sections of the entire muscle and the MU cross-sectional area in 22-day-old fetuses (F22), 1-day-old (D1 = day of birth), 3-day-old (D3), and 6-day-old (D6) newborns. Male muscle contained 350 +/- 64 MU on F22, twice that of the female. The number of MU increased markedly in males from F22, but changed little in females; the number of MU in males was 760% that of females on D6. The MU cross-sectional area was greater in males on F22 (120.8 micron(s)2 +/- 7.5) and D1 (155.2 micron(s)2 +/- 64.8) than in females (F22: 89.2 micron(s) +/- 14.2, D1: 64.1 micron(s)2 +/- 19.7) and dropped to about 30 X micron(s)2 in both sexes on D6. Female rats given a single injection of testosterone propionate (TP) before D7 showed a significant increase in the number of fibers, but no increase in cross-sectional area. TP given after D7 had no effect on the fiber number, but increased the average cross-sectional area. The increase in fiber number induced by postnatal TP treatment was a permanent effect, still quantifiable in 15-month-old females. We conclude that the sexual dimorphism of the rat LA muscle is principally due to a dramatic increase in the MU number in male muscles during the perinatal period, rather than to involution of the fibers in female muscles as it is widely accepted. This increase seems to be, at least partly, under the control of testosterone.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号