首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To selectively introduce genes into the mouse myocardium, we used a recombinant adenovirus encoding a transgene composed of a cardiac-specific promoter [the proximal human brain natriuretic peptide (hBNP) promoter] coupled to a luciferase reporter gene (Ad.hBNPLuc). Activity in vitro and in vivo was compared with Ad.CMVLuc, which contained the cytomegalovirus (CMV) enhancer/promoter. We tested cell-specific and inducible regulation of Ad.hBNPLuc in vitro. Expression was higher in neonatal cardiac myocytes than in a fibroblast cell line and was induced by interleukin-1beta, phenylephrine, and isoproterenol in myocytes. For in vivo experiments, Ad.hBNPLuc, Ad.CMVLuc, or vehicle was injected into the left ventricular (LV) free wall of the mouse heart. In Ad.hBNPLuc-injected mice, luciferase activity was only detected in the heart. In contrast, Ad.CMVLuc-injected mice had detectable luciferase activity in all tissues examined. Our studies indicate that 1) the cardiac-specific hBNP promoter and direct cardiac injection limit expression of the transgene to the LV free wall; and 2) transgene expression in vitro is inducible and cardiac myocyte specific. Thus the use of the proximal hBNP promoter in recombinant adenoviral vectors may allow cardiac-specific and inducible expression of therapeutic genes in vivo and prevent some of the side effects of systemic adenovirus administration.  相似文献   

2.
Brain natriuretic peptide (BNP) gene expression and chronic activation of the sympathetic nervous system are characteristics of the development of heart failure. We studied the role of the beta-adrenergic signaling pathway in regulation of the human BNP (hBNP) promoter. An hBNP promoter (-1818 to +100) coupled to a luciferase reporter gene was transferred into neonatal cardiac myocytes, and luciferase activity was measured as an index of promoter activity. Isoproterenol (ISO), forskolin, and cAMP stimulated the promoter, and the beta(2)-antagonist ICI 118,551 abrogated the effect of ISO. In contrast, the protein kinase A (PKA) inhibitor H-89 failed to block the action of cAMP and ISO. Pertussis toxin (PT), which inactivates Galpha(i), inhibited ISO- and cAMP-stimulated hBNP promoter activity. The Src tyrosine kinase inhibitor PP1 and a dominant-negative mutant of the small G protein Rac also abolished the effect of ISO and cAMP. Finally, we studied the involvement of M-CAT-like binding sites in basal and inducible regulation of the hBNP promoter. Mutation of these elements decreased basal and cAMP-induced activity. These data suggest that beta-adrenergic regulation of hBNP is PKA independent, involves a Galpha(i)-activated pathway, and targets regulatory elements in the proximal BNP promoter.  相似文献   

3.
4.
5.
Brain natriuretic peptide (BNP) produced by cardiac myocytes has antifibrotic and antigrowth properties and is a marker of cardiac hypertrophy. We previously showed that prostaglandin E2 (PGE2) is the main prostaglandin produced in myocytes treated with proinflammatory stimuli and stimulates protein synthesis by binding to its EP4 receptor. We hypothesized that PGE2, acting through EP4, also regulates BNP gene expression. We transfected neonatal ventricular myocytes with a plasmid encoding the human BNP (hBNP) promoter driving expression of a luciferase reporter gene. PGE2 increased hBNP promoter activity 3.5-fold. An EP4 antagonist reduced the stimulatory effect of PGE2 but not an EP1 antagonist. Because EP4 signaling can involve adenylate cyclase, cAMP, and protein kinase A (PKA), we tested the effect of H-89, a PKA inhibitor, on PGE2 stimulation of the hBNP promoter. H-89 at 5 muM decreased PGE2 stimulation of BNP promoter activity by 100%. Because p42/44 MAPK mediates the effect of PGE2 on protein synthesis, we also examined the role of MAPKs in the regulation of BNP promoter activity. PGE2 stimulation of the hBNP promoter was inhibited by a MEK1/2 inhibitor and a dominant-negative mutant of Raf, indicating that p42/44 MAPK was involved. In contrast, neither a p38 MAPK inhibitor nor a JNK inhibitor reduced the stimulatory effect of PGE2. Involvement of small GTPases was also studied. Dominant-negative Rap inhibited PGE2 stimulation of the hBNP promoter, but dominant-negative Ras did not. We concluded that PGE2 stimulates the BNP promoter mainly via EP4, PKA, Rap, and p42/44 MAPK.  相似文献   

6.
7.
8.
9.
Expression of the brain natriuretic peptide (BNP) gene in cultured neonatal rat ventricular myocytes is activated by mechanical strain in vitro. We explored the role of cell-matrix contacts in initiating the strain-dependent increment in human BNP (hBNP) promoter activity. Coating the culture surface with fibronectin effected a dose-dependent increase in basal hBNP luciferase activity and amplification of the response to strain. Preincubation of myocytes with an RGD peptide (GRGDSP) or with soluble fibronectin, each of which would be predicted to compete for cell-matrix interactions, resulted in a dose-dependent reduction in strain-dependent hBNP promoter activity. A functionally inert RGE peptide (GRGESP) was without effect. Using fluorescence-activated cell sorting, we demonstrated the presence of beta(1), beta(3), and alpha(v)beta(5) integrins in myocytes as well as non-myocytes and alpha1 only in non-myocytes in our cultures. Inclusion of antibodies directed against beta(1), beta(3), or alpha(v)beta(5), but not alpha(1), alpha(2), or cadherin, was effective in blocking the BNP promoter response to mechanical strain. These same antibodies (anti-beta(3), -beta(1), and -alpha(v)beta(5)) had a similar inhibitory effect on strain-stimulated ERK, p38 MAPK, and, to a lesser extent, JNK activities in these cells. Cotransfection with chimeric integrin receptors capable of acting as dominant-negative inhibitors of integrin function demonstrated suppression of strain-dependent BNP promoter activity when vectors encoding beta(1) or beta(3), but not beta(5), alpha(5), or a carboxyl-terminal deletion mutant of beta(3) (beta(3)B), were employed. These studies underscore the importance of cell-matrix interactions in controlling cardiac gene expression and suggest a potentially important role for these interactions in signaling responses to mechanical stimuli within the myocardium.  相似文献   

10.
11.
12.
13.
14.
15.
Molecular regulation of the brain natriuretic peptide gene   总被引:8,自引:0,他引:8  
LaPointe MC 《Peptides》2005,26(6):944-956
After brain natriuretic peptide (BNP) was isolated in 1988, rapid progress was made in cloning its cDNA and gene, facilitating studies of tissue-specific expression and molecular regulation of gene expression. This review focuses on the molecular determinants of regulation of the rat and human BNP genes, including signaling pathways that impact on changes in gene expression and cis regulatory elements responsive to these signaling pathways. For both rat and human genes, elements in the proximal promoter (-124 to -80), including GATA, MCAT, and AP-1-like, have been shown to contribute to basal and inducible regulation. More distal elements in the human BNP gene respond to calcium signals (an NF-AT site at -927), thyroid hormone (a thyroid-responsive element at -1000), and mechanical stretch (shear stress-responsive elements at -652 and -162). Understanding how BNP is regulated by signaling molecules that are activated in the hypertrophied and ischemic heart should be useful in understanding the underlying pathology. This may lead to therapeutic strategies that prevent hypertrophy while allowing for the beneficial effects of BNP production.  相似文献   

16.
17.
18.
19.
20.
Nitric oxide (NO) plays an important role in airway function, and endothelial NO synthase (eNOS) is expressed in airway epithelium. To determine the basis of cell-specific eNOS expression in airway epithelium, studies were performed in NCI-H441 human bronchiolar epithelial cells transfected with the human eNOS promoter fused to luciferase. Transfection with 1624 base pairs of sequence 5' to the initiation ATG (position -1624) yielded a 19-fold increase in promoter activity versus vector alone. No activity was found in lung fibroblasts, which do not express eNOS. 5' deletions from -1624 to -279 had modest effects on promoter activity in H441 cells. Further deletion to -248 reduced activity by 65%, and activity was lost with deletion to -79. Point mutations revealed that the GATA binding motif at -254 is mandatory for promoter activity and that the positive regulatory element between -248 and -79 is the Sp1 binding motif at -125. Electrophoretic mobility shift assays yielded two complexes with the GATA site and three with the Sp1 site. Immunodepletion with antiserum to GATA-2 prevented formation of the slowest migrating GATA complex, and antiserum to Sp1 supershifted the slowest migrating Sp1 complex. An electrophoretic mobility shift assay with H441 versus fibroblast nuclei revealed that the slowest migrating GATA complex is unique to airway epithelium. Thus, cell-specific eNOS expression in airway epithelium is dependent on the interaction of GATA-2 with the core eNOS promoter, and the proximal Sp1 binding site is also an important positive regulatory element.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号