共查询到20条相似文献,搜索用时 9 毫秒
1.
C. P. Thomas A. Buronfosse V. Combaret S. Pedron B. Fertil J. Portoukalian 《Glycoconjugate journal》1996,13(3):377-384
With an experimental model of spontaneous lung metastases of melanoma developed in this laboratory, a range of sublines (variants and clones) with different metastatic potential and ganglioside expression was established from a single human melanoma cell line M4Be. Using anin vitro clonogenic assay and provided that cells were cultured for no more than five passages, variations in cellular radioresistance of M4Be and seven sublines derived from M4Be were detected. This study shows a positive correlation between the cell intrinsic radioresistance of M4Be and its seven sublines and their total ganglioside content. More precisely, the proportion of radioresistant cells in M4Be and the seven sublines correlated with the number of cells determined by flow cytometry that were positively labelled with a monoclonal antibody directed to GD3 disialoganglioside. Blocking the cellular biosynthesis of gangliosides with the inhibitor Fumonisin B1 or cleaving withVibrio cholerae neuraminidase the cell surface ganglioside-bound sialic acid in a radioresistant poorly metastatic subline increased its radiosensitivityin vitro. In contrast, enrichment of a radiosensitive metastatic subline with exogenous bovine brain GM1 increased its radioresistancein vitro. These results suggest that, in the radiation dose range important for radioprotection (0–1 Gy), membrane gangliosides radioprotect human melanoma cellsin vitro.Presented at the 43rd Annual Meeting of the Radiation Research Society, San Jose, USA, 1–6 April 1995 (Abstract). 相似文献
2.
Eun Sang Lee Hae-June Lee Yoon-Jin Lee Jae-Hoon Jeong Seongman Kang Young-Bin Lim 《Biochemical and biophysical research communications》2014
Radiotherapy, which is one of the most effective approaches to the treatment of various cancers, plays an important role in malignant cell eradication in the pelvic area and abdomen. However, it also generates some degree of intestinal injury. Apoptosis in the intestinal epithelium is the primary pathological factor that initiates radiation-induced intestinal injury, but the mechanism by which ionizing radiation (IR) induces apoptosis in the intestinal epithelium is not clearly understood. Recently, IR has been shown to induce endoplasmic reticulum (ER) stress, thereby activating the unfolded protein response (UPR) signaling pathway in intestinal epithelial cells. However, the consequences of the IR-induced activation of the UPR signaling pathway on radiosensitivity in intestinal epithelial cells remain to be determined. In this study, we investigated the role of ER stress responses in IR-induced intestinal epithelial cell death. We show that chemical ER stress inducers, such as tunicamycin or thapsigargin, enhanced IR-induced caspase 3 activation and DNA fragmentation in intestinal epithelial cells. Knockdown of Xbp1 or Atf6 with small interfering RNA inhibited IR-induced caspase 3 activation. Treatment with chemical chaperones prevented ER stress and subsequent apoptosis in IR-exposed intestinal epithelial cells. Our results suggest a pro-apoptotic role of ER stress in IR-exposed intestinal epithelial cells. Furthermore, inhibiting ER stress may be an effective strategy to prevent IR-induced intestinal injury. 相似文献
3.
Mechanisms of cell migration in the vertebrate embryo 总被引:9,自引:0,他引:9
J P Thiery 《Cell differentiation》1984,15(1):1-15
In vertebrate embryos, many cells are involved in active and passive movements before they regroup into defined tissues. Oriented migration is controlled by different mechanisms, which may include chemotaxis, galvanotaxis, haptotaxis, contact guidance, contact inhibition of movement, and population pressure. A given cell type may utilize different mechanisms in different species and even in the same species when segregating into different lineages. Most of these processes are not yet understood at the molecular level. An even greater difficulty is faced by the molecular embryologist in attempting to unravel the mechanisms governing epithelium-mesenchyme interconversion, which can regulate the initiation and termination of migration. Cells migrating in the extracellular matrix interact directly with fibronectin, although this glycoprotein does not induce the egress of cells from epithelia. Recent studies on the molecular mechanism of intercellular adhesion have led to the identification and characterization of several surface molecules (CAM). Cell surface modulation of such cell adhesion molecules throughout development should contribute to the shaping of the embryo. 相似文献
4.
In mammals, the pool of primordial follicles at birth is determinant for female fertility. Exposure to IR during oogonia proliferation and the diplotene stages of ovarian development induced the virtual disappearance of primordial follicles in the postnatal ovary, while half the follicular reserve remained present after irradiation during the zygotene/pachytene stages. This sensitivity difference was correlated with the level of caspase-2 expression evaluated by immunohistochemistry. At the diplotene stage, Western blot and caspase activity analysis revealed that caspase-2 was activated 2 h after irradiation and a significant increase in the number of oocytes expressing cleaved caspase-9 and -3 occurred 6 h after treatment. Inhibition of caspase-2 activity prevented the cleavage of caspase-9 and partially prevented the loss of oocytes in response to irradiation. Taken together, our results show that caspase-2-dependent activation of the mitochondrial apoptotic pathway is one of the mechanisms involved in the genotoxic stress-induced depletion of the primordial follicle pool. 相似文献
5.
Shonai T Adachi M Sakata K Takekawa M Endo T Imai K Hareyama M 《Cell death and differentiation》2002,9(9):963-971
MEK/ERK-mediated signals have recently been found to inhibit Fas-mediated cell death through inhibition of caspase-8 activity. It remains unknown whether MEK/ERK-mediated signals affect ionizing radiation (IR)-induced cell death. Here we demonstrate that MEK/ERK-mediated signals selectively inhibit IR-induced loss of mitochondrial membrane potential (DeltaPsi(m)) and subsequent cell death. In Jurkat cells, TPA strongly activated ERK and inhibited the IR-induced caspase-8/Bid cleavage and the loss of DeltaPsi(m). The inhibitory effect of TPA was mostly abrogated by pretreatment of a specific MEK inhibitor PD98059, indicating that the effect depends upon MEK/ERK-mediated signals. Moreover, BAF-B03 transfectants expressing IL-2 receptor (IL-2R) beta(c) chain lacking the acidic region, which is responsible for MEK/ERK-mediated signals, revealed higher sensitivity to IR than the transfectants expressing wild-type IL-2R. Interestingly, the signals could neither protect the DeltaPsi(m) loss nor cell death in UV-irradiated cells. These data imply that the anti-apoptotic effect of MEK/ERK-mediated signals appears to selectively inhibit the IR-induced cell death through protection of the DeltaPsi(m) loss. Our data enlighten an anti-apoptotic function of MEK/ERK pathway against IR-induced apoptosis, thereby implying its contribution to radioresistance. 相似文献
6.
The developing limb bud provides one of the best examples in which programmed cell death exerts major morphogenetic functions. In this work, we revise the distribution and the developmental significance of cell death in the embryonic vertebrate limb and its control by the BMP signalling pathway. In addition, paying special attention to the interdigital apoptotic zones, we review current data concerning the intracellular death machinery implicated in mesodermal limb apoptosis. 相似文献
7.
Sung-Keum Seo Jae-Hee Kim Ha-Na Choi Tae-Boo Choe Seok-Il Hong Jae-Youn Yi Sang-Gu Hwang Hyun-Gyu Lee Yun-Han Lee In-Chul Park 《Biochemical and biophysical research communications》2014
TWIST1 is implicated in the process of epithelial mesenchymal transition, metastasis, stemness, and drug resistance in cancer cells, and therefore is a potential target for cancer therapy. In the present study, we found that knockdown of TWIST1 by small interfering RNA (siRNA) enhanced arsenic trioxide (ATO)- and ionizing radiation (IR)-induced cell death in non-small-cell lung cancer cells. Interestingly, intracellular reactive oxygen species levels were increased in cells treated with TWIST1 siRNA and further increased by co-treatment with ATO or IR. Pretreatment of lung cancer cells with the antioxidant N-acetyl-cysteine markedly suppressed the cell death induced by combined treatment with TWIST1 siRNA and ATO or IR. Moreover, treatment of cells with TWIST1 siRNA induced mitochondrial membrane depolarization and significantly increased mitochondrial fragmentation (fission) and upregulated the fission-related proteins FIS1 and DRP1. Collectively, our results demonstrate that siRNA-mediated TWIST1 knockdown induces mitochondrial dysfunction and enhances IR- and ATO-induced cell death in lung cancer cells. 相似文献
8.
McConnell KW Muenzer JT Chang KC Davis CG McDunn JE Coopersmith CM Hilliard CA Hotchkiss RS Grigsby PW Hunt CR 《Biochemical and biophysical research communications》2007,355(2):501-507
The risk of terrorist attacks utilizing either nuclear or radiological weapons has raised concerns about the current lack of effective radioprotectants. Here it is demonstrated that the BH4 peptide domain of the anti-apoptotic protein Bcl-xL can be delivered to cells by covalent attachment to the TAT peptide transduction domain (TAT-BH4) and provide protection in vitro and in vivo from radiation-induced apoptotic cell death. Isolated human lymphocytes treated with TAT-BH4 were protected against apoptosis following exposure to 15Gy radiation. In mice exposed to 5Gy radiation, TAT-BH4 treatment protected splenocytes and thymocytes from radiation-induced apoptotic cell death. Most importantly, in vivo radiation protection was observed in mice whether TAT-BH4 treatment was given prior to or after irradiation. Thus, by targeting steps within the apoptosis signaling pathway it is possible to develop post-exposure treatments to protect radio-sensitive tissues. 相似文献
9.
Vanan I Dong Z Tosti E Warshaw G Symons M Ruggieri R 《Cellular and molecular neurobiology》2012,32(7):1199-1208
Ionizing radiation (IR) induces a DNA damage response that includes activation of cell cycle checkpoints, leading to cell cycle arrest. In addition, IR enhances cell invasiveness of glioblastoma cells, among other tumor cell types. Using RNA interference, we found that the protein kinase MRK, previously implicated in the DNA damage response to IR, also inhibits IR-induced cell migration and invasion of glioblastoma cells. We showed that MRK activation by IR requires the checkpoint protein Nbs1 and that Nbs1 is also required for IR-stimulated migration. In addition, we show that MRK acts upstream of Chk2 and that Chk2 is also required for IR-stimulated migration and invasion. Thus, we have identified Nbs1, MRK, and Chk2 as elements of a novel signaling pathway that mediates IR-stimulated cell migration and invasion. Interestingly, we found that inhibition of cell cycle progression, either with the CDK1/2 inhibitor CGP74514A or by downregulation of the CDC25A protein phosphatase, restores IR-induced migration and invasion in cells depleted of MRK or Chk2. These data indicate that cell cycle progression, at least in the context of IR, exerts a negative control on the invasive properties of glioblastoma cells and that checkpoint proteins mediate IR-induced invasive behavior by controlling cell cycle arrest. 相似文献
10.
Milia J Teyssier F Dalenc F Ader I Delmas C Pradines A Lajoie-Mazenc I Baron R Bonnet J Cohen-Jonathan E Favre G Toulas C 《Cell death and differentiation》2005,12(5):492-501
Our previous results demonstrated that expressing the GTPase ras homolog gene family, member B (RhoB) in radiosensitive NIH3T3 cells increases their survival following 2 Gy irradiation (SF2). We have first demonstrated here that RhoB expression inhibits radiation-induced mitotic cell death. RhoB is present in both a farnesylated and a geranylgeranylated form in vivo. By expressing RhoB mutants encoding for farnesylated (RhoB-F cells), geranylgeranylated or the CAAX deleted form of RhoB, we have then shown that only RhoB-F expression was able to increase the SF2 value by reducing the sensitivity of these cells to radiation-induced mitotic cell death. Moreover, RhoB-F cells showed an increased G2 arrest and an inhibition of centrosome overduplication following irradiation mediated by the Rho-kinase, strongly suggesting that RhoB-F may control centrosome overduplication during the G2 arrest after irradiation. Overall, our results for the first time clearly implicate farnesylated RhoB as a crucial protein in mediating cellular resistance to radiation-induced nonapoptotic cell death. 相似文献
11.
Ionizing radiation induces the production of reactive oxygen species, which play an important causative role in apoptotic cell death. Recently, we demonstrated that the control of mitochondrial redox balance and the cellular defense against oxidative damage are primary functions of mitochondrial NADP(+)-dependent isocitrate dehydrogenase (IDPm) by supplying NADPH for antioxidant systems. In this paper, we demonstrate that modulation of IDPm activity in the kidneys of mice regulates ionizing radiation-induced apoptosis. When oxalomalate, a competitive inhibitor of IDPm, was administered to mice, inhibition of IDPm and enhanced susceptibility of apoptosis reflected by DNA fragmentation, the changes in mitochondria function, and the modulation of apoptotic marker proteins were observed upon exposure to 2 Gy of gamma-irradiation. We also observed a significant difference in the mitochondrial redox status between the kidneys of the control and the oxalomalate-administered mice. This study indicates that IDPm may play an important role in regulating the apoptosis induced by ionizing radiation, presumably, through acting as an antioxidant enzyme. 相似文献
12.
13.
León Y Sánchez-Galiano S Gorospe I 《Apoptosis : an international journal on programmed cell death》2004,9(3):255-264
Programmed cell death is known to be an essential process for accurate ontogeny during the normal development of the inner ear. The inner ear is a complex sensory organ responsible for equilibrium and sound detection in vertebrates. In all vertebrates, the inner ear develops from a single ectodermic patch on the surface of the embryo's head, which undergoes a series of morphological changes to give rise to the complex structure of the adult inner ear. Enlargement and morphogenesis of the inner ear primordium is likely to depend on cellular division, growth, migration, differentiation and apoptosis. Here we describe the regions of programmed cell death that contribute to the final morphological aspect of the adult inner ear. The few studies that focus on the molecules that control this process during inner ear development indicate that the molecules and intracellular signaling pathways activated during the apoptotic response in the inner ear are similar to the previously described for the nervous system. In this review, we will describe some of the growth factors and key pathways that regulate pro- and anti-apoptotic signals and how they cross talk to determine the apoptotic or survival fate of cells in the development of the inner ear. 相似文献
14.
15.
16.
Ionizing radiation induces the production of reactive oxygen species, which play an important causative role in apoptotic cell death. Therefore, compounds that scavenge reactive oxygen species may confer regulatory effects on apoptosis. Superoxide dismutase (SOD) mimetics have been shown to be protective against cell injury caused by reactive oxygen species. We investigated the effects of the manganese (III) tetrakis(N-methyl-2-pyridyl)porphyrin (MnTMPyP), a cell-permeable SOD mimetic, on ionizing radiation-induced apoptosis. Upon exposure to 2 Gy of gamma-irradiation, there was a distinct difference between the control cells and the cells pre-treated with 5 microM MnTMPyP for 2 h with regard to apoptotic parameters, cellular redox status, mitochondria function, and oxidative damage to cells. MnTMPyP effectively suppressed morphological evidence of apoptosis and DNA fragmentation in U937 cells exposed to ionizing radiation. The [GSSG]/[GSH+GSSG] ratio and the generation of intracellular reactive oxygen species were higher and the [NADPH]/[NADP(+)+NADPH] ratio was lower in control cells compared to MnTMPyP-treated cells. The ionizing radiation-induced mitochondrial damage reflected by the altered mitochondrial permeability transition, the increase in the accumulation of reactive oxygen species, and the reduction of ATP production were significantly higher in control cells compared to MnTMPyP-treated cells. MnTMPyP pre-treated cells showed significant inhibition of apoptotic features such as activation of caspase-3, up-regulation of Bax and p53, and down-regulation of Bcl-2 compared to control cells upon exposure to ionizing radiation. This study indicates that MnTMPyP may play an important role in regulating the apoptosis induced by ionizing radiation presumably through scavenging of reactive oxygen species. 相似文献
17.
We previously demonstrated the protective effect of inducible heat shock protein 70 (Hsp70) against gamma radiation. Herein, we extend our studies on the possible role of Hsp70 to ionizing radiation-induced cell cycle regulation. The growth rate of inducible hsp70-transfected cells was 2-3 hours slower than that of control cells. Flow cytometric analysis of cells at G1 phase synchronized by serum starvation also showed the growth delay in the Hsp70-overexpressing cells. In addition, reduced cyclin D1 and Cdc2 levels and increased dephosphorylated phosphoretinoblastoma (pRb) were observed in inducible hsp70-transfected cells, which were probably responsible for the reduction of cell growth. To find out if inducible Hsp70-mediated growth delay affected radiation-induced cell cycle regulation, flow cytometric and molecular analyses of cell cycle regulatory proteins and their kinase were performed. The radiation-induced G2/M arrest was found to be inhibited by Hsp70 overexpression and reduced p21Waf induction and its kinase activity by radiation in the Hsp70-transfected cells. In addition, radiation-induced cyclin A or B1 expressions together with their kinase activities were also inhibited by inducible Hsp70, which represented reduced mitotic cell death. Indeed, hsp70 transfectants showed less induction of radiation-induced apoptosis. When treated with nocodazole, radiation-induced mitotic arrest was inhibited by inducible Hsp70. These results strongly suggested that inducible Hsp70 modified growth delay (increased G1 phase) and reduced G2/M phase arrest, subsequently resulting in inhibition of radiation-induced cell death. 相似文献
18.
Molecular mechanisms of ionizing radiation-induced apoptosis. 总被引:7,自引:0,他引:7
D Watters 《Immunology and cell biology》1999,77(3):263-271
Ionizing radiation activates not only signalling pathways in the nucleus as a result of DNA damage, but also signalling pathways initiated at the level of the plasma membrane. Proteins involved in DNA damage recognition include poly(ADP ribose) polymerase (PARP), DNA-dependent protein kinase, p53 and ataxia- telangiectasia mutated (ATM). Many of these proteins are inactivated by caspases during the execution phase of apoptosis. Signalling pathways outside the nucleus involve tyrosine kinases such as stress-activated protein kinase (SAPK)/c-Jun N-terminal kinase (JNK), protein kinase C, ceramide and reactive oxygen species. Recent evidence shows that tumour cells resistant to ionizing radiation-induced apoptosis have defective ceramide signalling. How these signalling pathways converge to activate the caspases is presently unknown, although in some cell types a role for calpain has been suggested. 相似文献
19.
Treatment of HeLa cells with 0.1 microM Acyclovir [9-(2-hydroxyethoxymethyl)guanine] (ACV) before exposure to 0, 0.25, 0.5, 1, 2 and 3 Gy of gamma-radiation resulted in a dose-dependent decline in the growth kinetics and cell proliferation indices at 20, 30 and 40 h post-irradiation when compared with the PBS+irradiation group. These results were reflected in the cell survival, which declined in a dose-dependent manner and the surviving fraction of cells was significantly lower in ACV+irradiation group than that of PBS+irradiation group. The effect of ACV+1 Gy irradiation was almost similar to PBS+3 Gy irradiation suggesting an enhancement of the radiation effect by ACV pretreatment. The frequency of micronuclei increased in a dose-dependent manner at all the post-irradiation time periods in both PBS+irradiation and ACV+irradiation group and it was significantly elevated in the latter when compared with the former group. The dose-response for both groups was linear. The surviving fraction of HeLa cells declined with the increasing MN frequency and a close linear quadratic correlation between cell survival and micronuclei-induction was observed. 相似文献
20.
Glioblastoma cells block radiation-induced programmed cell death of endothelial cells 总被引:6,自引:0,他引:6
Brown CK Khodarev NN Yu J Moo-Young T Labay E Darga TE Posner MC Weichselbaum RR Mauceri HJ 《FEBS letters》2004,565(1-3):167-170
We demonstrate that human umbilical vein endothelial cells (HUVEC) grown in co-culture (CC) with U87 glioblastoma cells transfected with green fluorescent protein (GFP-U87) exhibit resistance to radiation-mediated apoptosis. cDNA macroarray analysis reveals increases in the accumulation of RNAs for HUVEC genes encoding cell adhesion molecules, growth factor-related proteins, and cell cycle regulatory/DNA repair proteins. An increase in protein expression of integrin alphav, integrin beta1, MAPK(p42), Rad51, DNA-PK(CS), and ataxia telangiectasia gene (ATM) was detected in HUVEC grown in CC with GFP-U87 cells compared with HUVEC grown in mono-culture. Treatment with anti-VEGF antibody decreases the expression of integrin alphav, integrin beta1, DNA-PK(CS) and ATM with a corresponding increase in ionizing radiation (IR)-induced apoptosis. These data support the concept that endothelial cells growing in the tumor microenvironment may develop resistance to cytotoxic therapies due to the up-regulation by tumor cells of endothelial cells genes associated with survival. 相似文献