首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Hypercholesterolemia is one of the most important risk factors for atherosclerosis, and tomato lycopene has been suggested to have beneficial effects against such a disease, although the exact molecular mechanism is unknown. We tested the hypothesis that lycopene may exert its antiatherogenic role through changes in cholesterol metabolism. Incubation of THP-1 cells with lycopene (0.5–2 μM) dose-dependently reduced intracellular total cholesterol. Such an effect was associated with a decrease in reduction of 3-hydroxy-3-methylglutaryl coenzyme A reductase expression and with an increase in ABCA1 and caveolin-1 (cav-1) expressions. In addition, lycopene enhanced RhoA levels in the cytosolic fraction, activating peroxisome proliferator-activated receptor gamma (PPARγ) and liver X receptor alpha expressions. Concomitant addition of lycopene and the PPARγ inhibitor GW9662 or lycopene and mevalonate blocked the carotenoid-induced increase in ABCA1 and cav-1 expressions. These results imply a potential role of lycopene in attenuating foam cell formation and, therefore, in preventing atherosclerosis by a cascade mechanism involving inhibition of 3-hydroxy-3-methylglutaryl coenzyme A reductase, RhoA inactivation and subsequent increase in PPARγ and liver X receptor alpha activities and enhancement of ABCA1 and cav-1 expressions.  相似文献   

2.
Two species of lipoprotein containing apoA-I, one containing only apoA-I (LpA-I), and the other containing apoA-I and apoA-II (LpA-I/A-II), were tested for their effects on macrophage foam cells. Rat macrophages were converted to foam cells by incubation with radiolabeled acetylated LDL. Incubation with LpA-I or LpA-I/A-II decreased the cellular cholesteryl esters (CE) mass. However, the free cholesterol (FC) mass was only reduced by LpA-I. All the radioactivity excreted into the medium was associated with LpA-I or LpA-I/A-II; 39% of the excreted radioactivity was esterified in LpA-I and 10% in LpA-I/A-II. Upon complete inactivation of lecithin: cholesterol acyltransferase (LCAT) activity with dithiobisnitrobenzoic acid, the cholesterol reducing capacity of LpA-I was weakened significantly. However, the CE mass reducing capacity of LpA-I/A-II was not affected. When LpA-I and LpA-I/A-II were combined, the cholesterol reducing capacity of the mixture was similar to that of LpA-I alone. However, LpA-I re-isolated from the medium showed a lower esterification rate than did the re-isolated LpA-I/A-II, thereby indicating that the cholesterol esterified in LpA-I was transferred to LpA-I/A-II. These results suggest that (i) the function of LpA-I is closely linked to the LCAT activity while that of LpA-I/A-II is not, and (ii) LpA-I in concert with LpA-I/A-II induces a series of extracellular events; LCAT-mediated esterification of excreted FC by LpA-I and a subsequent CE transfer to LpA-I/A-II. These mechanisms might be important for net cholesterol efflux from macrophage foam cells in physiological states.  相似文献   

3.
4.
Regulation of cholesterol efflux from macrophages   总被引:1,自引:0,他引:1  
PURPOSE OF REVIEW: The lipid efflux pathway is important for both HDL formation and the reverse cholesterol transport pathway. This review is focused on recent findings on the mechanism of lipid efflux and its regulation, particularly in macrophages. RECENT FINDINGS: Significant progress has been made on understanding the sequence of events that accompany the interaction of apolipoproteins A-I with cell surface ATP-binding cassette transporter A1 and its subsequent lipidation. Continued research on the regulation of ATP-binding cassette transporter A1 and ATP-binding cassette transporter G1 expression and traffic has also generated new paradigms for the control of lipid efflux from macrophages and its contribution to reverse cholesterol transport. In addition, the mobilization of cholesteryl esters from lipid droplets represents a new step in the control of cholesterol efflux. SUMMARY: The synergy between lipid transporters is a work in progress, but its importance in reverse cholesterol transport is clear. The regulation of efflux implies both the regulation of relevant transporters and the cellular trafficking of cholesterol.  相似文献   

5.
We have studied the rate of phospholipid synthesis and turnover in mouse peritoneal macrophages in reaction to cholesterol influx and high density lipoprotein (HDL)-mediated cholesterol efflux, using three different radioactive precursors, 32PO4(3-), [3H]choline, and [14C]oleic acid. The cells were loaded with cholesterol for up to 18 h with acetyl-low density lipoprotein (LDL), and phospholipid synthesis was measured at various time intervals and compared with nonloaded macrophages. In the first 2 h of cholesterol loading, a twofold increase in the rate of synthesis for sphingomyelin, phosphatidylcholine, phosphatidylserine-inositol, and phosphatidylethanolamine was observed. After this initial up-regulation, the rate of phospholipid synthesis continuously declined upon further cholesterol loading, while the turnover rate of cellular phospholipids was not affected under the same conditions. The lysosomal inhibitor chloroquine abolished the down-regulation, revealing a strong correlation between phospholipid synthesis and lysosomal enzyme activity which was presumably dependent on the release of cholesterol from the lysosome. The reduction in phospholipid synthesis induced by cholesterol loading is reversible by the addition of HDL3 to the cells. When HDL3 was added to the culture medium, a two- to threefold increase in phosphatidylcholine synthesis and a twofold increase in sphingomyelin formation was observed after 3 h. Ca2+ antagonists of the dihydropyridine type, which down-regulate HDL-receptor activity and promote the formation and cellular release of lamellar bodies derived from the lysosomal compartment (Schmitz, G., et al. 1988. Arteriosclerosis. 8: 46-56, and Robenek, H., and G. Schmitz. 1988. Arteriosclerosis. 8: 57-67), specifically enhance the synthesis of sphingomyelin in cholesterol-loaded macrophages. Inhibitors of acyl-CoA:cholesterol acyltransferase (Octimibate, progesterone) increase both the synthesis of sphingomyelin and phosphatidylcholine, and enhance HDL-receptor activity. The results indicate that cholesterol and phospholipid metabolism are coordinately regulated in macrophages. Moreover, the formation of phosphatidylcholine and sphingomyelin seems to be an important factor for the promotion of HDL-receptor-mediated cellular cholesterol efflux.  相似文献   

6.
7.
Apolipoprotein A-I (apoA-I)-mediated cholesterol efflux involves the binding of apoA-I to the plasma membrane via its C terminus and requires cellular ATP-binding cassette transporter (ABCA1) activity. ApoA-I also stimulates secretion of apolipoprotein E (apoE) from macrophage foam cells, although the mechanism of this process is not understood. In this study, we demonstrate that apoA-I stimulates secretion of apoE independently of both ABCA1-mediated cholesterol efflux and of lipid binding by its C terminus. Pulse-chase experiments using (35)S-labeled cellular apoE demonstrate that macrophage apoE exists in both relatively mobile (E(m)) and stable (E(s)) pools, that apoA-I diverts apoE from degradation to secretion, and that only a small proportion of apoA-I-mobilized apoE is derived from the cell surface. The structural requirements for induction of apoE secretion and cholesterol efflux are clearly dissociated, as C-terminal deletions in recombinant apoA-I reduce cholesterol efflux but increase apoE secretion, and deletion of central helices 5 and 6 decreases apoE secretion without perturbing cholesterol efflux. Moreover, a range of 11- and 22-mer alpha-helical peptides representing amphipathic alpha-helical segments of apoA-I stimulate apoE secretion whereas only the C-terminal alpha-helix (domains 220-241) stimulates cholesterol efflux. Other alpha-helix-containing apolipoproteins (apoA-II, apoA-IV, apoE2, apoE3, apoE4) also stimulate apoE secretion, implying a positive feedback autocrine loop for apoE secretion, although apoE4 is less effective. Finally, apoA-I stimulates apoE secretion normally from macrophages of two unrelated subjects with genetically confirmed Tangier Disease (mutations C733R and c.5220-5222delTCT; and mutations A1046D and c.4629-4630insA), despite severely inhibited cholesterol efflux. We conclude that apoA-I stimulates secretion of apoE independently of cholesterol efflux, and that this represents a novel, ABCA-1-independent, positive feedback pathway for stimulation of potentially anti-atherogenic apoE secretion by alpha-helix-containing molecules including apoA-I and apoE.  相似文献   

8.
Eight proteins potentially involved in cholesterol efflux [ABCA1, ABCG1, CYP27A1, phospholipid transfer protein (PLTP), scavenger receptor type BI (SR-BI), caveolin-1, cholesteryl ester transfer protein, and apolipoprotein A-I (apoA-I)] were overexpressed alone or in combination in RAW 264.7 macrophages. When apoA-I was used as an acceptor, overexpression of the combination of ABCA1, CYP27A1, PLTP, and SR-BI (Combination I) enhanced the efflux by 4.3-fold. It was established that the stimulation of efflux was due to increased abundance of ABCA1 and increased apoA-I binding to non-ABCA1 sites on macrophages. This combination caused only a small increase of the efflux to isolated HDL. When HDL was used as an acceptor, overexpression of caveolin-1 or a combination of caveolin-1 and SR-BI (Combination II) was the most active, doubling the efflux to HDL, without affecting the efflux to apoA-I. When tested in the in vivo mouse model of cholesterol efflux, overexpression of ABCA1 and Combination I elevated cholesterol export from macrophages to plasma, liver, and feces, whereas overexpression of caveolin-1 or Combination II did not have an effect. We conclude that pathways of cholesterol efflux using apoA-I as an acceptor make a predominant contribution to cholesterol export from macrophages in vivo.  相似文献   

9.
A high consumption of polyunsaturated fatty acids (PUFAs), particularly n-3 PUFAs, is atheroprotective. PUFAs incorporation into membrane phospholipids alters the functionality of membrane proteins. We studied the consequences of the in vitro supplementation of several PUFAs on the FA profiles and on ABCA1-dependent cholesterol efflux capacities from cholesterol-loaded macrophages. Arachidonic acid (AA, C20:4 n-6) and, to a lesser extent, eicosapentaenoic acid (EPA, C20:5 n-3), dose-dependently impaired cholesterol efflux from cholesterol-loaded J774 mouse macrophages without alterations in ABCA1 expression, whereas docosahexaenoic acid (DHA, C22:6 n-3) had no impact. AA cells exhibited higher proportions of arachidonic acid and adrenic acid (C22:4 n-6), its elongation product. EPA cells exhibited slightly higher proportions of EPA associated with much higher proportions of docosapentaenoic acid (C22:5 n-3), its elongation product and with lower proportions of AA. Conversely, both EPA and DHA and, to a lesser extent, AA decreased cholesterol efflux from cholesterol-loaded primary human macrophages (HMDM). The differences observed in FA profiles after PUFA supplementations were different from those observed for the J774 cells. In conclusion, we are the first to report that AA and EPA, but not DHA, have deleterious effects on the cardioprotective ABCA1 cholesterol efflux pathway from J774 foam cells. Moreover, the membrane incorporation of PUFAs does not have the same impact on cholesterol efflux from murine (J774) or human (HMDM) cholesterol-loaded macrophages. This finding emphasizes the key role of the cellular model in cholesterol efflux studies and may partly explain the heterogeneous literature data on the impact of PUFAs on cholesterol efflux.  相似文献   

10.
Conditions have been described which permit the rapid (approximately 3.5 hr) column chromatographic separation of the acetate derivatives of a number of C27 sterol precursors of cholesterol differing only in the number and position of double bonds in the sterol nucleus. On columns containing muPorasil with hexane-benzene 9:1 as the eluting solvent, acetate derivatives of the delta5, delta8(14), delta8, delta7, delta8,7, delta 8,14, and delta7,14 sterols were separated.  相似文献   

11.
The ATP-binding cassette transporter A1 (ABCA1) participates in the efflux of cholesterol from cells. It remains unclear whether ABCA1 functions to efflux cholesterol across the basolateral or apical membrane of the intestine. We used a chicken model of ABCA1 dysfunction, the Wisconsin hypoalpha mutant (WHAM) chicken, to address this issue. After an oral gavage of radioactive cholesterol, the percentage appearing in the bloodstream was reduced by 79% in the WHAM chicken along with a 97% reduction in the amount of tracer in high density lipoprotein. In contrast, the percentage of radioactive cholesterol absorbed from the lumen into the intestine was not affected by the ABCA1 mutation. Liver X receptor (LXR) agonists have been inferred to decrease cholesterol absorption through activation of ABCA1 expression. However, the LXR agonist T0901317 decreased cholesterol absorption equally in both wild type and WHAM chickens, indicating that the effect of LXR activation on cholesterol absorption is independent of ABCA1. The ABCA1 mutation resulted in accumulation of radioactive cholesterol ester in the intestine and the liver of the WHAM chicken (5.0- and 4.4-fold, respectively), whereas biliary lipid concentrations were unaltered by the WHAM mutation. In summary, ABCA1 regulates the efflux of cholesterol from the basolateral but not apical membrane in the intestine and the liver.  相似文献   

12.
13.
The capacity of HDL to remove cholesterol from macrophages is inversely associated with the severity of angiographic coronary artery disease. The effect of human immunodeficiency virus (HIV) infection or its treatment on the ability of HDL particles to stimulate cholesterol efflux from human macrophages has never been studied. We evaluated the capacity of whole plasma and isolated HDL particles from HIV-infected subjects (n = 231) and uninfected controls (n = 200), as well as in a subset of 41 HIV subjects receiving highly active antiretroviral therapy (HAART) to mediate cholesterol efflux from human macrophages. Plasma cholesterol efflux capacity was reduced (−12%; P = 0.001) in HIV patients as compared with controls. HIV infection reduced by 27% (P < 0.05) the capacity of HDL subfractions to promote cholesterol efflux from macrophages. We observed a reduced ABCA1-dependent efflux capacity of plasma (−27%; P < 0.0001) from HIV-infected subjects as a result of a reduction in the efflux capacity of HDL3 particles. HAART administration restored the capacity of plasma from HIV patients to stimulate cholesterol efflux from human macrophages (9.4%; P = 0.04). During HIV infection, the capacity of whole plasma to remove cholesterol from macrophages is reduced, thus potentially contributing to the increased coronary heart disease in the HIV population. HAART administration restored the removal of cholesterol from macrophages by increasing HDL functionality.  相似文献   

14.
The activities of pancreatic cholesterol esterase from calf and cow pancreas were examined in detail. A 1300-fold enhancement of enzymatic activity was found after maturation, even though cholesterol esterase activity levels in other organs did not change from the juvenile to the adult species. Radioimmunoassays also showed that the calf pancreas contained at least 100-fold less cholesterol esterase protein. Decreased amounts of protein were not due to enhanced proteolysis, since cytosol from cow pancreas degrades exogenously added cholesterol esterase faster than that from calf pancreas. Rather, enhancement of pancreatic cholesterol esterase activity associated with bovine maturation was the result of specific, increased synthesis of a 72-kDa enzyme. This labile 72-kDa cholesterol esterase species was purified to homogeneity by a two-step process in 75% yield and is the major form of bovine pancreatic cholesterol esterase (99%). A much less abundant 67-kDa species, accounting for less than 1% of total pancreatic cholesterol esterase activity, was also purified to homogeneity in a similar two-step process. These results demonstrate that a specific form of pancreatic cholesterol esterase is induced during maturation, and they bear importantly on understanding juvenile cholesterol metabolism as related to dietary absorption of this sterol.  相似文献   

15.
To evaluate the effects of sterol regulatory element-binding proteins (SREBPs) on the expression of the individual enzymes in the cholesterol synthetic pathway, we examined expression of these genes in the livers from wild-type and transgenic mice overexpressing nuclear SREBP-1a or -2. As estimated by a Northern blot analysis, overexpression of nuclear SREBP-1a or -2 caused marked increases in mRNA levels of the whole battery of cholesterogenic genes. This SREBP activation covers not only rate-limiting enzymes such as HMG CoA synthase and reductase that have been well established as SREBP targets, but also all the enzyme genes in the cholesterol synthetic pathway tested here. The activated genes include mevalonate kinase, mevalonate pyrophosphate decarboxylase, isopentenyl phosphate isomerase, geranylgeranyl pyrophosphate synthase, farnesyl pyrophosphate synthase, squalene synthase, squalene epoxidase, lanosterol synthase, lanosterol demethylase, and 7-dehydro-cholesterol reductase. These results demonstrate that SREBPs activate every step of cholesterol synthetic pathway, contributing to an efficient cholesterol synthesis.  相似文献   

16.
The liver X receptors (LXR) play a key role in cholesterol homeostasis and lipid metabolism. SAR studies around tertiary-amine lead molecule 2, an LXR full agonist, revealed that steric and conformational changes to the acetic acid and propanolamine groups produce dramatic effects on agonist efficacy and potency. The new analogs possess good functional activity, demonstrating the ability to upregulate LXR target genes, as well as promote cholesterol efflux in macrophages.  相似文献   

17.
Macrophages in the vessel wall secrete high levels of apolipoprotein E (apoE). Cholesterol efflux from macrophages to apoE has been shown to decrease foam cell formation and prevent atherosclerosis. An apoE molecule can mediate cholesterol efflux from the macrophage that originally secreted it (autocrine effect) or from surrounding macrophages (paracrine effect). Traditional methodologies have not been able to separate these serial effects. The novel methodology presented here was developed to separate autocrine and paracrine effects by using a simple mathematical model to interpret the effects of dilution on apoE-mediated cholesterol efflux. Our results show that, at very dilute concentrations, the paracrine effect of apoE is not evident and the autocrine effect becomes the dominant mediator of efflux. However, at saturating concentrations, paracrine apoE causes 80–90% of the apoE-mediated cholesterol efflux, whereas autocrine apoE is responsible for the remaining 10–20%. These results suggest that the relative importance of autocrine and paracrine apoE depends on the size of the local distribution volume, a factor not considered in previous in vitro studies of apoE function. Furthermore, autocrine effects of apoE could be critical in the prevention of foam cell formation in vivo. This novel methodology may be applicable to other types of mixed autocrine/paracrine systems, such as signal transduction systems. autocrine/paracrine system; cholesterol acceptor; extracellular space; distribution volume  相似文献   

18.
Oxygenated sterols, including both autoxidation products and sterol metabolites, have many important biological activities. Identification and quantitation of oxysterols by chromatographic and spectroscopic methods is greatly facilitated by the availability of authentic standards, and deuterated and fluorinated analogs are valuable as internal standards for quantitation. We describe the preparation, purification and characterization of 43 oxygenated sterols, including the 4 beta-hydroxy, 7 alpha-hydroxy, 7 beta-hydroxy, 7-keto, and 19-hydroxy derivatives of cholesterol and their analogs with 25,26,26,26,27,27,27-heptafluoro (F7) and 26,26,26,27,27,27-hexadeuterio (d6) substitution. The 7 alpha-hydroxy, 7 beta-hydroxy, and 7-keto derivatives of (25R)-cholest-5-ene-3 beta, 26-diol (1d) and their 16,16-dideuterio analogs were also prepared. These d2-26-hydroxysterols and [16,16-2H2]-(25R)-cholest-5-ene-3 beta, 26-diol (1e) were synthesized from [16,16-2H2]-(25R)-cholest-5-ene-3 beta, 26-diol diacetate (2e), which can be prepared from diosgenin. The highly specific deuterium incorporation at C-16 in 1e and 2e should be useful in mass spectral analysis of 26-hydroxycholesterol samples by isotope dilution methods. The delta 5-3 beta, 7 alpha, 26- and delta 5-3 beta, 7 beta, 26-triols were regioselectively oxidized/isomerized to the corresponding delta 4-3-ketosteroids with cholesterol oxidase. Also described are 5,6 alpha-epoxy-5 alpha-cholestan-3 beta-ol, its 5 beta,6 beta-isomer, cholestane-3 beta, 5 alpha,6 beta-triol, their F7 and d6 derivatives, and d3-25-hydroxycholesterol, which was prepared from 3 beta-acetoxy-27-norcholest-5-en-25-one (30). The 43 oxysterols and most synthetic intermediates were isolated in high purity and characterized by chromatographic and spectroscopic methods, including mass spectrometry and nuclear magnetic resonance (NMR) spectroscopy. Detailed mass spectral assignments are presented, and 1H NMR stereochemical assignments are derived for the C-19 protons of 19-hydroxysterols and for the side-chain protons of 30.  相似文献   

19.
Naringenin improves lipoprotein profile and protects against cardiovascular disease. ATF6 is an endoplasmic reticulum (ER) stress sensor with the same activation processes with sterol regulator SREBPs. Clinical data revealed that ATF6 expression was associated with plasma cholesterol level. Here, we investigated whether naringenin was involved in the regulation of cholesterol efflux and tested the role of ER stress-ATF6 in the naringenin function. Results showed that naringenin increased cholesterol efflux to both apoA-I and HDL and gene expressions in ABCA1, ABCG1 and LXRα in RAW264.7 macrophages. Naringenin inhibited the cleaved ATF6 nuclear translocation and its target GRP78 and XBP-1 expressions. Naringenin-induced cholesterol efflux was modulated by treatment with ER stress inhibitor 4-phenylbutyric acid, inducer tunicamycin and ATF6 overexpression in RAW264.7 and/or THP-1 cells, which suggested the naringenin functions were mediated through inhibiting ER stress-ATF6 pathway. Next, we found high-fat diet (HFD) supplemented with naringenin increased by >1.2-fold in cholesterol efflux capacity in primary peritoneal macrophage in apoE−/− mice compared to only HFD-fed mice. The increase was significantly reduced by tunicamycin treatment. Naringenin decreased GRP78, XBP-1 and nuclear ATF6 levels in peritoneal macrophage and aorta and reduced atherosclerotic lesion at aortic root, but reversed by tunicamycin. These confirmed participation of ER stress-ATF6 in naringenin efficacy. Finally, we found naringenin promoted AKT phosphorylation; PI3K inhibitor LY294002 treatment increased nuclear ATF6 and reduced naringenin-enhanced ABCA1 expression and cholesterol efflux. We concluded naringenin as a regulator for cholesterol efflux, and the regulation was mediated by ATF6 branch of ER stress and PI3K/AKT pathway.  相似文献   

20.
Human monocyte-derived macrophages (MDM) are cholesterol-loaded, and the rates of uptake, degradation and resecretion of high-density lipoproteins are measured and compared to the rates in control cells. Results show the binding activity of these lipoproteins is upregulated in cholesterol-loaded cells; the bound and internalized lipoproteins are not degraded to any appreciable extent but primarily resecreted as a larger particle. The enhancement of binding activity for high-density lipoproteins is arrested when cycloheximide is added to the medium, suggesting that protein synthesis is involved. Preliminary evidence also indicates that HDL3 (without apoE) after internalisation is converted intracellularly to a larger apoE-containing HDL2-like particles. Thus, MDM appears to possess specific receptors for HDL3 without apoE that may function to facilitate HDL-mediated removal of excess cholesterol from cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号