首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Phospholemman (PLM) is a small sarcolemmal protein that modulates the activities of Na(+)/K(+)-ATPase and the Na(+)/Ca(2+) exchanger (NCX), thus contributing to the maintenance of intracellular Na(+) and Ca(2+) homeostasis. We characterized the expression and subcellular localization of PLM, NCX, and the Na(+)/K(+)-ATPase alpha1-subunit during perinatal development. Western blotting demonstrates that PLM (15kDa), NCX (120kDa), and Na(+)/K(+)-ATPase alpha-1 (approximately 100kDa) proteins are all more than 2-fold higher in ventricular membrane fractions from newborn rabbit hearts (1-4-day old) compared to adult hearts. Our immunocytochemistry data demonstrate that PLM, NCX, and Na(+)/K(+)-ATPase are all expressed at the sarcolemma of newborn ventricular myocytes. Taken together, our data indicate that PLM, NCX, and Na(+)/K(+)-ATPase alpha-1 proteins have similar developmental expression patterns in rabbit ventricular myocardium. Thus, PLM may have an important regulatory role in maintaining cardiac Na(+) and Ca(2+) homeostasis during perinatal maturation.  相似文献   

2.
Systemic or topical application of glucocorticoid is the treatment of choice for olfactory disturbance. Recently, Na(+)/K(+) ATPase and glucocorticoid receptor immunoreactivity in the olfactory mucosa was reported. To elucidate a glucocorticoid action on Na(+)/K(+) ATPase production, an animal model was produced by an intra-nasal application of 5% ZnSO(4) solution to Wistar rats. Dexamethasone was injected i.p. (0.01 mg/100 g) for 14 days after the insult. Histologically, the regeneration process was completed on day 14 in both dexamethasone- and saline-injected control rats. We used a quantitative polymerase chain reaction (PCR) method to evaluate mRNA production of Na(+)/K(+) ATPase and glucocorticoid receptor. In dexamethasone-injected rats, up-regulation of glucocorticoid receptor mRNA (95% more than control rats, P = 0.00068, unpaired t-test) and of Na(+)/K(+) ATPase mRNA expression (76% more than control rats, P = 0.0042) was observed on day 14. The increased Na(+)/K(+) ATPase expression in the regenerated olfactory mucosa is thought to be beneficial for an active uptake of K(+), which is released during excitation, around olfactory neurons and for the transepithelial absorption of Na(+) from olfactory mucus. Dexamethasone may thus contribute to the recovery of function after the morphological regeneration in part, at least, through its receptor by regulation of the ionic concentration in the olfactory mucosal microenvironment.  相似文献   

3.
FXYD proteins are a group of short single-span transmembrane proteins that interact with the Na(+)/K(+) ATPase and modulate its kinetic properties. This study characterizes intracellular trafficking of two FXYD family members, FXYD1 (phospholemman (PLM)) and FXYD7. Surface expression of PLM in Xenopus oocytes requires coexpression with the Na(+)/K(+) ATPase. On the other hand, the Na(+)/Ca(2+) exchanger, another PLM-interacting protein could not drive it to the cell surface. The Na(+)/K(+) ATPase-dependent surface expression of PLM could be facilitated by either a phosphorylation-mimicking mutation at Thr-69 or a truncation of three terminal arginine residues. Unlike PLM, FXYD7 could translocate to the cell surface of Xenopus oocytes independently of the coexpression of α1β1 Na(+)/K(+) ATPase. The Na(+)/K(+) ATPase-independent membrane translocation of FXYD7 requires O-glycosylation of at least two of three conserved threonines in its ectodomain. Subsequent experiments in mammalian cells confirmed the role of conserved extracellular threonine residues and demonstrated that FXYD7 protein, in which these have been mutated to alanine, is trapped in the endoplasmic reticulum and Golgi apparatus.  相似文献   

4.
The 56-kDa B1 subunit of the vacuolar H(+)ATPase has a C-terminal DTAL amino acid motif typical of PDZ-binding proteins that associate with the PDZ protein, NHE-RF (Na(+)/H(+) exchanger regulatory factor). This B1 isoform is amplified in renal intercalated cells, which play a role in distal urinary acid-base transport. In contrast, proximal tubules express the B2 isoform that lacks the C-terminal PDZ-binding motif. Both the B1 56-kDa subunit and the 31-kDa (E) subunit of the H(+)ATPase are pulled down by glutathione S-transferase NHE-RF bound to GSH-Sepharose beads. These subunits associate in vivo as part of the cytoplasmic V1 portion of the H(+)ATPase, and the E subunit was co-immunoprecipitated from rat kidney cytosol with NHE-RF antibodies. The interaction of H(+)ATPase subunits with NHE-RF was inhibited by a peptide derived from the C terminus of the B1 but not the B2 isoform. NHE-RF colocalized with H(+)ATPase in either the apical or the basolateral region of B-type intercalated cells, whereas NHE-RF staining was undetectable in A-intercalated cells. In proximal tubules, NHE-RF was located in the apical brush border. In contrast, H(+)ATPase was concentrated in a distinct membrane domain at the base of the brush border, from which NHE-RF was absent, consistent with the expression of the truncated B2 subunit isoform in this tubule segment. The colocalization of NHE-RF and H(+)ATPase in B- but not A-intercalated cells suggests a role in generating, maintaining, or modulating the variable H(+)ATPase polarity that characterizes the B-cell phenotype.  相似文献   

5.
Klotho-hypomorphic (Klotho(hm)) mice suffer from renal salt wasting and hypovolemia despite hyperaldosteronism. The present study explored the effect of Klotho on renal Na(+)/K(+) ATPase activity. According to immunohistochemistry and confocal microscopy Na(+)/K(+) ATPase protein abundance in isolated collecting ducts was lower in Klotho(hm) mice than in their wild type littermates (Klotho(+/+)). Analysis with dual electrode voltage clamp recording showed that expression of Klotho in Xenopus oocytes increased the Na(+)/K(+) ATPase pump current. Treatment of Xenopus oocytes with Klotho protein similarly increased the pump current. In conclusion, Klotho increases the membrane abundance and activity of the Na(+)/K(+) ATPase. Decreased Na(+)/K(+) ATPase activity could thus contribute to the volume-depletion of klotho(hm) mice.  相似文献   

6.
7.
The four isoforms of the catalytic subunit of Na(+)/K(+)-ATPase identified in rats differ in their affinities for ions and ouabain. Moreover, its expression is tissue-specific, developmentally and hormonally regulated. The aim of the present work was to evaluate the influence of age on the ratio and density of these isoforms in crude membrane preparations from rat brain hemispheres, brainstem, heart ventricles and kidneys. In all tissues investigated, Na(+)/K(+)-ATPase activity was higher in adults than in neonates but brain tissues presented the most remarkable differences. In these tissues, ouabain inhibition curves for Na(+)/K(+)-ATPase activity revealed the presence of two processes with different sensitivities to ouabain. An increase of approximately sixfold in the expression of the high affinity isoforms was observed between newborn and adult rats. In contrast, the low affinity isoform increased only approximately twofold in brainstem whereas it increased ninefold in brain hemispheres. Unlike brain tissues, a decrease (almost fourfold) in the number of high affinity ouabain binding sites was observed during ontogenesis of the heart. Although limited by the inability to resolve alpha(2) and alpha(3) isoforms, present data indicate that the influence of development on the expression of Na(+)/K(+)-ATPase depends not only on the isoform, but also on the tissue where the enzyme is expressed.  相似文献   

8.
Na(+)/K(+)-ATPase (sodium/potassium pump) is a P-type ion-motive ATPase found in the plasma membranes of animal cels. In vertebrates, the functions of this enzyme in nerves, heart and kidney are well characterized and characteristics a defined by different isoforms. In contrast, despite different tissue distributions, insects possess a single isoform of the alpha-subunit. A comparison of insect and vertebrate Na(+)/K(+)-ATPases reveals that although the mode of action and structure are very highly conserved, the specific roles of the enzyme in most tissues varies. However, the enzyme is essential for the function of nerve cells, and in this respect Na(+)/K(+)-ATPase appears to be fundamental in metazoan evolution.  相似文献   

9.
Although metabolic rate is considered to be useful as a general indicator of the biological effects of exposure to metals, it is seldom measured in conjunction with specific physiological, biochemical or cellular parameters. The purpose of this investigation was to examine the influence of cadmium (Cd) exposure on metabolic rate and gill Na(+)/K(+) ATPase activity in golden shiners (Notemigonus crysoleucas). Shiners were exposed to six levels of Cd (ranging from control to the maximum sublethal concentration) for 24- and 96-h periods. After 24-h, metabolic rate and Na(+)/K(+) ATPase activity of individual fish were strongly correlated. Shiners exposed to the four highest Cd concentrations (500, 800, 1100, and 1400 μg L(-1)) for 24-h exhibited a shock response that was characterized by mean values for metabolic rate and Na(+)/K(+) ATPase activity that were significantly lower compared to the control. Although results for 96-h exposures reflect a repair/recovery phase, there was no significant correlation between metabolic rate and Na(+)/K(+) ATPase activity. Metabolic rate of shiners was significantly elevated (65-100%) at all concentrations compared to the control after 96-h, whereas Na(+)/K(+) ATPase activity did not differ from the control. Elevated metabolic rate after 96-h likely reflects the influence of a variety of energetically demanding processes associated with repair and recovery.  相似文献   

10.
By altering the Na+/K+ electrochemical gradient, Na+,K(+)-ATPase activity profoundly influences cardiac cell excitability and contractility. The recent finding of mineralocorticoid hormone receptors in the heart implies that Na+,K(+)-ATPase gene expression, and hence cardiac function, is regulated by aldosterone, a corticosteroid hormone associated with certain forms of hypertension and classically involved in regulating Na+,K(+)-ATPase gene expression and transepithelial Na+ transport in tissues such as the kidney. The regulation by aldosterone of the major cardiac Na+,K(+)-ATPase isoform genes, alpha-1 and beta-1, were studied in adult and neonatal rat ventricular cardiocytes grown in defined serum-free media. In both cell types, aldosterone-induced a rapid and sustained 3-fold induction in alpha-1 mRNA accumulation within 6 h. beta-1 mRNA was similarly induced. alpha-1 mRNA induction occurred over the physiological range with an EC50 of 1-2 nM, consistent with binding of aldosterone to the high affinity mineralocorticoid hormone receptor. In adult cardiocytes, this was associated with a 36% increase in alpha subunit protein accumulation and an increase in Na(+)-K(+)-ATPase transport activity. Aldosterone did not alter the 3-h half-life of alpha-1 mRNA, indicating an induction of alpha-1 mRNA synthesis. Aldosterone-dependent alpha-1 mRNA accumulation was not blocked by the protein synthesis inhibitor cycloheximide, whereas amiloride inhibited both an aldosterone-dependent increase in intracellular Na+ [Na+]i) and alpha-1 mRNA accumulation. This demonstrates that aldosterone directly stimulates Na+,K(+)-ATPase alpha-1 subunit mRNA synthesis and protein accumulation in cardiac cells throughout development and suggests that the heart is a mineralocorticoid-responsive organ. An early increase in [Na+]i may be a proximal event in the mediation of the hormone effect.  相似文献   

11.
By regulating transmembrane Na+ and K+ concentrations and membrane potential, the Na+,K(+)-ATPase plays an important role in regulating cardiac, skeletal, and smooth muscle function. A high degree of amino acid sequence and structural identity characterizes the three Mr 100,000 Na+,K(+)-ATPase alpha subunit isoforms expressed in cardiac and skeletal muscle. Strikingly, vascular smooth muscle utilizes alternative RNA processing of the alpha-1 gene to express a structurally distinct Mr approximately 65,000 isoform, alpha 1-T (truncated). Analysis of both its mRNA and protein structure reveals that alpha-1-T represents a major, evolutionarily conserved, truncated Na+,K(+)-ATPase isoform expressed in vascular smooth muscle. This demonstrates an unexpected complexity in the regulation of vascular smooth muscle Na+,K(+)-ATPase gene expression and suggests that a structurally novel, truncated alpha subunit may play a role in vascular smooth muscle active ion transport.  相似文献   

12.
In plants, the plasma membrane Na(+)/H(+) antiporter is the only key enzyme that extrudes cytosolic Na(+) and contributes to salt tolerance. But in fungi, the plasma membrane Na(+)/H(+) antiporter and Na(+)-ATPase are known to be key enzymes for salt tolerance. Saccharomyces cerevisiae Ena1p ATPase encoded by the ENA1/PMR2A gene is primarily responsible for Na(+) and Li(+) efflux across the plasma membrane during salt stress and for K(+) efflux at high pH and high K(+). To test if the yeast ATPase would improve salt tolerance in plants, we expressed a triple hemagglutinin (HA)-tagged Ena1p (Ena1p-3HA) in cultured tobacco (Nicotiana tabacum L.) cv Bright Yellow 2 (BY2) cells. The Ena1p-3HA proteins were correctly localized to the plasma membrane of transgenic BY2 cells and conferred increased NaCl and LiCl tolerance to the cells. Under moderate salt stress conditions, the Ena1p-3HA-expressing BY2 clones accumulated lower levels of Na(+) and Li(+) than nonexpressing BY2 clones. Moreover, the Ena1p-3HA expressing BY2 clones accumulated lower levels of K(+) than nonexpressing cells under no-stress conditions. These results suggest that the yeast Ena1p can also function as an alkali-cation (Na(+), Li(+), and K(+)) ATPase and alter alkali-cation homeostasis in plant cells. We conclude that, even with K(+)-ATPase activity, Na(+)-ATPase activity of the yeast Ena1p confers increased salt tolerance to plant cells during salt stress.  相似文献   

13.
An inhibition of the Na(+)/K(+)ATPase was previously shown to accompany and potentiate apoptosis in different experimental models. Since TNF-alpha is known to be a pro and anti-apoptotic cytokine, this work was undertaken to study the effect of TNF-alpha on the Na(+)/K(+)ATPase in HepG2 cells and to determine the signaling pathway involved. Cells were incubated for 1 h with TNF-alpha in presence and absence of PDTC, SP600125 and FK009, respective inhibitors of NF-KB, c-JNK, and caspases. The activity of the pump was assayed by measuring the ouabain-inhibitable release of inorganic phosphate, and changes in its expression were monitored by western blot analysis. TNF-alpha decreased significantly the activity and protein expression of the Na(+)/K(+)ATPase. NF-kappaB and caspases were found to be the main effectors of the cytokine, mediating respectively down-regulation and up-regulation of the pump. Their activity was however modulated at 1 h by c-JNK, which stimulated the caspases and inhibited NF-kappaB, resulting in a net inhibition of the ATPase, and probably favoring the apoptotic pathway.  相似文献   

14.
The objective of this study was to investigate the effects of insulin and insulin-like growth factor I on transepithelial Na(+) transport across porcine glandular endometrial epithelial cells grown in primary culture. Insulin and insulin-like growth factor I acutely stimulated Na(+) transport two- to threefold by increasing Na(+)-K(+) ATPase transport activity and basolateral membrane K(+) conductance without increasing the apical membrane amiloride-sensitive Na(+) conductance. Long-term exposure to insulin for 4 d resulted in enhanced Na(+) absorption with a further increase in Na(+)-K(+) ATPase transport activity and an increase in apical membrane amiloride-sensitive Na(+) conductance. The effect of insulin on the Na(+)-K(+) ATPase was the result of an increase in V(max) for extracellular K(+) and intracellular Na(+), and an increase in affinity of the pump for Na(+). Immunohistochemical localization along with Western blot analysis of cultured porcine endometrial epithelial cells revealed the presence of alpha-1 and alpha-2 isoforms, but not the alpha-3 isoform of Na(+)-K(+) ATPase, which did not change in the presence of insulin. Insulin-stimulated Na(+) transport was inhibited by hydroxy-2-naphthalenylmethylphosphonic acid tris-acetoxymethyl ester [HNMPA-(AM)(3)], a specific inhibitor of insulin receptor tyrosine kinase activity, suggesting that the regulation of Na(+) transport by insulin involves receptor autophosphorylation. Pretreatment with wortmannin, a specific inhibitor of phosphatidylinositol 3-kinase as well as okadaic acid and calyculin A, inhibitors of protein phosphatase activity, also blocked the insulin-stimulated increase in short circuit and pump currents, suggesting that activation of phosphatidylinositol 3-kinase and subsequent stimulation of a protein phosphatase mediates the action of insulin on Na(+)-K(+) ATPase activation.  相似文献   

15.
Ouabain assembles signaling cascades through the caveolar Na+/K+-ATPase   总被引:11,自引:0,他引:11  
Based on the observation that the Na(+)/K(+)-ATPase alpha subunit contains two conserved caveolin-binding motifs, we hypothesized that clustering of the Na(+)/K(+)-ATPase and its partners in caveolae facilitates ouabain-activated signal transduction. Glutathione S-transferase pull-down assay showed that the Na(+)/K(+)-ATPase bound to the N terminus of caveolin-1. Significantly, ouabain regulated the interaction in a time- and dose-dependent manner and stimulated tyrosine phosphorylation of caveolin-1 in LLC-PK1 cells. When added to the isolated membrane fractions, ouabain increased tyrosine phosphorylation of proteins from the isolated caveolae but not other membrane fractions. Consistently, ouabain induced the formation of a Na(+)/K(+)-ATPase-Src-caveolin complex in the isolated caveolae preparations as it did in live cells. Finally, depletion of either cholesterol by methyl beta-cyclodextrin or caveolin-1 by siRNA significantly reduced the caveolar Na(+)/K(+)-ATPase and Src. Concomitantly, cholesterol depletion abolished ouabain-induced recruitment of Src to the Na(+)/K(+)-ATPase signaling complex. Like depletion of caveolin-1, it also blocked the effect of ouabain on ERKs, which was restored after cholesterol repletion. Clearly, the caveolar Na(+)/K(+)-ATPase represents the signaling pool of the pump that interacts with Src and transmits the ouabain signals.  相似文献   

16.
We investigated a role of p38 MAPK in the regulation of transepithelial Na(+) reabsorption by chronic application (20-24h) of hypotonicity (hypotonic stress) in renal epithelial A6 cells. Pretreatment with a specific p38 MAPK inhibitor (SB202190) significantly reduced the chronic hypotonicity-stimulated transepithelial Na(+) reabsorption by diminishing the Na(+) entry through epithelial Na(+) channel (ENaC) in the apical membrane and the Na(+) extrusion via the Na(+)/K(+) ATPase (pump), although the rate limiting step was still the Na(+) entry step. We further examined whether the inhibitory effects of SB202190 on the transepithelial Na(+) reabsorption is caused through suppression of mRNA expression of ENaC participating in the transepithelial Na(+) reabsorption as the Na(+) entry pathway. The chronic hypotonicity increased the mRNA expression of alpha-, beta-, and gamma-subunits of ENaC. Moreover, we found that inhibition of p38 MAPK by SB202190 diminished the mRNA expression of beta- and gamma-ENaC but not alpha-ENaC. Based on these observations, it is suggested that the chronic hypotonicity stimulates the renal transepithelial Na(+) reabsorption by upregulating the mRNA expression of beta- and gamma-ENaC via a p38 MAPK-dependent pathway.  相似文献   

17.
18.
19.
The structural stability of the large cytoplasmic domain (H(4)-H(5) loop) of mouse alpha(1) subunit of Na(+)/K(+) ATPase (L354-I777), the number and the location of its binding sites for 2'-3'-O-(trinitrophenyl) adenosine 5'-triphosphate (TNP-ATP) and p-nitrophenylphosphate (pNPP) were investigated. C- and N-terminal shortening revealed that neither part of the phosphorylation (P)-domain are necessary for TNP-ATP binding. There is no indication of a second ATP site on the P-domain of the isolated loop, even though others reported previously of its existence by TNP-N(3)ADP affinity labeling of the full enzyme. Fluorescein isothiocyanate (FITC)-anisotropy measurements reveal a considerable stability of the nucleotide (N)-domain suggesting that it may not undergo a substantial conformational change upon ATP binding. The FITC modified loop showed only slightly diminished phosphatase activity, most likely due to a pNPP site on the N-domain around N398 whose mutation to D reduced the phosphatase activity by 50%. The amino acids forming this pNPP site (M384, L414, W411, S400, S408) are conserved in the alpha(1-4) isoforms of Na(+)/K(+) ATPase, whereas N398 is only conserved in the vertebrates' alpha(1) subunit. The phosphatase activity of the isolated H(4)-H(5) loop was neither inhibited by ATP, nor affected by mutation of D369, which is phosphorylated in native Na(+)/K(+) ATPase.  相似文献   

20.
Infertility or subfertility of bovine spermatozoa may lead to disintegration of the breeding system and large economic losses. Recently, proteomics have identified candidates for the sperm fertility biomarkers, but no definite studies have clearly identified the relationship between the proteome and sperm fertility after proteomic study. Therefore, to determine the clinical value of the protein markers identified by proteomic study, we first compared the protein expression profiles of spermatozoa from high and low fertility bulls using 2-dimensional electrophoresis. We then investigated the relationship between protein expression and the fertility of individual bulls as assessed by Western blot analysis. Five proteins, enolase 1 (ENO1), ATP synthase H(+) transporting mitochondrial F1 complex beta subunit, apoptosis-stimulating of p53 protein 2, alpha-2-HS-glycoprotein, and phospholipid hydroperoxide glutathione peroxide, were more highly represented in high fertility bulls, whereas three proteins, voltage dependent anion channel 2 (VDAC2), ropporin-1, and ubiquinol-cytochrome-c reductase complex core protein 2 (UQCRC2), were more highly represented in low fertility bulls. Among those proteins, ENO1, VDAC2, and UQCRC2 were significantly correlated with individual fertility. Therefore, these results suggest that concurrent comparisons between protein expression and other fertility assays may represent a good in vitro assay to determine sperm fertility.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号