首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In vivo cytometry: a spectrum of possibilities.   总被引:1,自引:0,他引:1  
BACKGROUND: We investigate whether optical imaging can reliably detect abnormalities in tissue, in a range of specimens (live cells in vitro; fixed, fresh ex-vivo and in vivo tissue), without the use of added contrast agents, and review our promising spectral methods for achieving quantitative, real-time, high resolution intrasurgical optical diagnostics. METHODS: We use reflectance, fluorescence, two-photon, and Mie scattering imaging, performed with instrumentation we developed or modified, to detect intrinsic tissue signatures. Emphasis is on spectral/hyperspectral imaging approaches allowing the equivalent of in vivo pathology. RESULTS: With experimental focus on unstained specimens, we demonstrate the ability to segment tissue images for cancer detection. Spectral reflectance imaging, coupled with advanced analysis, typically yields 90% specificity and sensitivity. Autofluorescence is also shown to be diagnostically useful, with lymph nodes results highlighted here. Elastic scattering hyperspectral imaging endoscopy, using a new instrument we designed and built, shows promise in bronchoscopic detection of dysplasia and early cancer in patients. CONCLUSIONS: The results demonstrate that advanced optical imaging can detect and localize cellular signatures of cancer in real-time, in vivo, without the use of contrast agents, in animals and humans. This is an important step towards tight spatio-temporal coupling between such detection and clinical intervention.  相似文献   

2.
In order to study physical relationships within tissue volumes or even organism‐level systems, the spatial distribution of multiple fluorescent markers needs to be resolved efficiently in three dimensions. Here, rather than acquiring discrete spectral images sequentially using multiple emission filters, a hyperspectral scanning laser optical tomography system is developed to obtain hyperspectral volumetric data sets with 2‐nm spectral resolution of optically transparent mesoscopic (millimeter‐centimeter) specimens. This is achieved by acquiring a series of point‐scanning hyperspectral extended depth of field images at different angles and subsequently tomographically reconstructing the 3D intensity distribution for each wavelength. This technique is demonstrated to provide robust measurements via the comparison of spectral and intensity profiles of fluorescent bead phantoms. Due to its enhanced spectral resolving ability, this technique is also demonstrated to resolve largely overlapping fluorophores, as demonstrated by the 3D fluorescence hyperspectral reconstruction of a dual‐labeled mouse thymus gland sample and the ability to distinguish tumorous and normal tissues of an unlabeled mouse intestine sample.   相似文献   

3.
BACKGROUND: Spectral imaging, originating from the field of earth remote sensing, is a powerful tool that is being increasingly used in a wide variety of applications for material identification. Several workers have used techniques like linear spectral unmixing (LSU) to discriminate materials in images derived from spectral microscopy. However, many spectral analysis algorithms rely on assumptions that are often violated in microscopy applications. This study explores algorithms originally developed as improvements on early earth imaging techniques that can be easily translated for use with spectral microscopy. METHODS: To best demonstrate the application of earth remote sensing spectral analysis tools to spectral microscopy data, earth imaging software was used to analyze data acquired with a Leica confocal microscope with mechanical spectral scanning. For this study, spectral training signatures (often referred to as endmembers) were selected with the ENVI (ITT Visual Information Solutions, Boulder, CO) "spectral hourglass" processing flow, a series of tools that use the spectrally over-determined nature of hyperspectral data to find the most spectrally pure (or spectrally unique) pixels within the data set. This set of endmember signatures was then used in the full range of mapping algorithms available in ENVI to determine locations, and in some cases subpixel abundances of endmembers. RESULTS: Mapping and abundance images showed a broad agreement between the spectral analysis algorithms, supported through visual assessment of output classification images and through statistical analysis of the distribution of pixels within each endmember class. CONCLUSIONS: The powerful spectral analysis algorithms available in COTS software, the result of decades of research in earth imaging, are easily translated to new sources of spectral data. Although the scale between earth imagery and spectral microscopy is radically different, the problem is the same: mapping material locations and abundances based on unique spectral signatures.  相似文献   

4.
Advances in gel-based nonradioactive protein expression and PTM detection using fluorophores has served as the impetus for developing analytical instrumentation with improved imaging capabilities. We describe a CCD camera-based imaging instrument, equipped with both a high-pressure Xenon arc lamp and a UV transilluminator, which provides broad-band wavelength coverage (380-700 nm and UV). With six-position filter wheels, both excitation and emission wavelengths may be selected, providing optimal measurement and quantitation of virtually any dye and allowing excellent spectral resolution among different fluorophores. While spatial resolution of conventional fixed CCD camera imaging systems is typically inferior to laser scanners, this problem is circumvented with the new instrument by mechanically scanning the CCD camera over the sample and collecting multiple images that are subsequently automatically reconstructed into a complete high-resolution image. By acquiring images in succession, as many as four different fluorophores may be evaluated from a gel. The imaging platform is suitable for analysis of the wide range of dyes and tags commonly encountered in proteomics investigations. The instrument is unique in its capabilities of scanning large areas at high resolution and providing accurate selectable illumination over the UV/visible spectral range, thus maximizing the efficiency of dye multiplexing protocols.  相似文献   

5.
Stimulated Raman scattering (SRS) microscopy is a label‐free method generating images based on chemical contrast within samples, and has already shown its great potential for high‐sensitivity and fast imaging of biological specimens. The capability of SRS to collect molecular vibrational signatures in bio‐samples, coupled with the availability of powerful statistical analysis methods, allows quantitative chemical imaging of live cells with sub‐cellular resolution. This application has substantially driven the development of new SRS microscopy platforms. Indeed, in recent years, there has been a constant effort on devising configurations able to rapidly collect Raman spectra from samples over a wide vibrational spectral range, as needed for quantitative analysis by using chemometric methods. In this paper, an SRS microscope which exploits spectral shaping by a narrowband and rapidly tunable acousto‐optical tunable filter (AOTF) is presented. This microscope enables spectral scanning from the Raman fingerprint region to the Carbon‐Hydrogen (CH)‐stretch region without any modification of the optical setup. Moreover, it features also a high enough spectral resolution to allow resolving Raman peaks in the crowded fingerprint region. Finally, application of the developed SRS microscope to broadband hyperspectral imaging of biological samples over a large spectral range from 800 to 3600 cm?1, is demonstrated.  相似文献   

6.
Spectral imaging approaches provide new possibilities for measuring and discriminating fluorescent molecules in living cells and tissues. These approaches often employ tunable filters and robust image processing algorithms to identify many fluorescent labels in a single image set. Here, we present results from a novel spectral imaging technology that scans the fluorescence excitation spectrum, demonstrating that excitation‐scanning hyperspectral image data can discriminate among tissue types and estimate the molecular composition of tissues. This approach allows fast, accurate quantification of many fluorescent species from multivariate image data without the need of exogenous labels or dyes. We evaluated the ability of the excitation‐scanning approach to identify endogenous fluorescence signatures in multiple unlabeled tissue types. Signatures were screened using multi‐pass principal component analysis. Endmember extraction techniques revealed conserved autofluorescent signatures across multiple tissue types. We further examined the ability to detect known molecular signatures by constructing spectral libraries of common endogenous fluorophores and applying multiple spectral analysis techniques on test images from lung, liver and kidney. Spectral deconvolution revealed structure‐specific morphologic contrast generated from pure molecule signatures. These results demonstrate that excitation‐scanning spectral imaging, coupled with spectral imaging processing techniques, provides an approach for discriminating among tissue types and assessing the molecular composition of tissues. Additionally, excitation scanning offers the ability to rapidly screen molecular markers across a range of tissues without using fluorescent labels. This approach lays the groundwork for translation of excitation‐scanning technologies to clinical imaging platforms.  相似文献   

7.

Background

Living tissues contain a range of intrinsic fluorophores and sources of second harmonic generation which provide contrast that can be exploited for fresh tissue imaging. Microscopic imaging of fresh tissue samples can circumvent the cost and time associated with conventional histology. Further, intrinsic contrast can provide rich information about a tissue''s composition, structure and function, and opens the potential for in-vivo imaging without the need for contrast agents.

Methodology/Principal Findings

In this study, we used hyperspectral two-photon microscopy to explore the characteristics of both normal and diseased gastrointestinal (GI) tissues, relying only on their endogenous fluorescence and second harmonic generation to provide contrast. We obtained hyperspectral data at subcellular resolution by acquiring images over a range of two-photon excitation wavelengths, and found excitation spectral signatures of specific tissue types based on our ability to clearly visualize morphology. We present the two-photon excitation spectral properties of four major tissue types that are present throughout the GI tract: epithelium, lamina propria, collagen, and lymphatic tissue. Using these four excitation signatures as basis spectra, linear unmixing strategies were applied to hyperspectral data sets of both normal and neoplastic tissue acquired in the colon and small intestine. Our results show that hyperspectral unmixing with excitation spectra allows segmentation, showing promise for blind identification of tissue types within a field of view, analogous to specific staining in conventional histology. The intrinsic spectral signatures of these tissue types provide information relating to their biochemical composition.

Conclusions/Significance

These results suggest hyperspectral two-photon microscopy could provide an alternative to conventional histology either for in-situ imaging, or intraoperative ‘instant histology’ of fresh tissue biopsies.  相似文献   

8.
Seven-color analyses of immunofluorescence-stained tissue samples were accomplished using Fourier spectroscopy-based hyperspectral imaging and singular value decomposition. This system consists of a combination of seven fluorescent dyes, three filtersets, an epifluorescence microscope, a spectral imaging system, a computer for data acquisition, and data analysis software. The spectra of all pixels in a multicolor image were taken simultaneously using a Sagnac type interferometer. The spectra were deconvolved to estimate the contribution of each component dye, and individual dye images were constructed based on the intensities of assigned signals. To obtain mixed spectra, three filter sets, i.e., Bl, Gr, and Rd for Alexa488 and Alexa532, for Alexa546, Alexa568, and Alexa594, and for Cy5 and Cy5.5, respectively, were used for simultaneous excitation of two or three dyes. These fluorophores have considerable spectral overlap which precludes their separation by conventional analysis. We resolved their relative contributions to the fluorescent signal by a method involving linear unmixing based on singular value decomposition of the matrices consisting of dye spectra. Analyses of mouse thymic tissues stained with seven different fluorescent dyes provided clear independent images, and any combination of two or three individual dye images could be used for constructing multicolor images.  相似文献   

9.
Most image-based analyses, using absorbance or fluorescence of the spatial distribution of identifiable structures in complex biological systems, use only a very small number of dimensions of possible spectral data for the generation and interpretation of the image. We here extend the concepts of hyperspectral imaging, being developed in remote sensing, into analytical biotechnology. The massive volume of information contained in hyperspectral spectroscopic images requires multivariate analysis in order to extract the chemical and spatial information contained within the data. We here describe the use of multivariate statistical methods to map and quantify common protein staining fluorophores (SYPRO Red, Orange and Tangerine) in electrophoretic gels. Specifically, we find (a) that the 'background' underpinning limits of detection is due more to proteins that have not migrated properly than to impurities or to ineffective destaining, (b) the detailed mechanisms of staining of SYPRO red and orange are apparently not identical, and in particular (c) that these methods can provide two orders of magnitude improvement in the detection limit per pixel, to levels well below the limit observable optically.  相似文献   

10.
An instrument capable of imaging chlorophyll a fluorescence, from intact leaves, and generating images of widely used fluorescence parameters is described. This instrument, which is based around a fluorescence microscope and a Peltier-cooled charge-coupled device (CCD) camera, differs from those described previously in two important ways. First, the instrument has a large dynamic range and is capable of generating images of chlorophyll a fluorescence at levels of incident irradiance as low as 0.1 μmol m?2 s?1. Secondly, chlorophyll fluorescence, and consequently photosynthetic performance, can be resolved down to the level of individual cells and chloroplasts. Control of the instrument, as well as image capture, manipulation, analysis and presentation, are executed through an integrated computer application, developed specifically for the task. Possible applications for this instrument include detection of early and differential responses to environmental stimuli, including various types of stress. Images illustrating the instrument's capabilities are presented.  相似文献   

11.
Yan L  Rueden CT  White JG  Eliceiri KW 《BioTechniques》2006,41(3):249, 251, 253 passim
Live cell imaging has been greatly advanced by the recent development of new fluorescence microscopy-based methods such as multiphoton laser-scanning microscopy, which can noninvasively image deep into live specimens and generate images of extrinsic and intrinsic signals. Of recent interest has been the development of techniques that can harness properties of fluorescence, other than intensity, such as the emission spectrum and excited state lifetime of a fluorophore. Spectra can be used to discriminate between fluorophores, and lifetime can be used to report on the microenvironment of fluorophores. We describe a novel technique-combined spectral and lifetime imaging-which combines the benefits of multiphoton microscopy, spectral discrimination, and lifetime analysis and allows for the simultaneous collection of all three dimensions of data along with spatial and temporal information.  相似文献   

12.
Real-time multi-wavelength fluorescence imaging of living cells   总被引:4,自引:0,他引:4  
S J Morris 《BioTechniques》1990,8(3):296-308
We describe a new real-time fluorescence video microscope design for capturing intensified images of cells containing dual wavelength "ratio" dyes or multiple dyes. The microscope will perform real-time capture of two separate fluorescence emission images simultaneously, improving the time resolution of spatial distribution of fluorescence to video frame rates (30 frames/s or faster). Each emission wavelength is imaged simultaneously by one of two cameras, then digitized, background corrected and appropriately combined at standard video frame rates to be stored at high resolution on tape or digital video disk for further off-line analysis. Use of low noise, high sensitivity image intensifiers, coupled to CCD cameras produce stable, high contrast images using ultra low light levels with little persistence or bloom. The design has no moving parts in its optical train, which overcomes a number of technical difficulties encountered in the present filter wheel designs for multiple imaging. Coupled to compatible image processing software utilizing PC-AT computers, the new design can be built for a significantly lower cost than many presently available commercial machines. The system is ideal for ratio imaging applications; the software can calculate the ratio of fluorescence intensities pixel by pixel and provide the information to generate false-color images of the intensity data as well as other calculations based on the two images. Thus, it provides a powerful, inexpensive tool for studying the real-time kinetics of changes in living cells. Examples are presented for the kinetics of rapidly changing intracellular calcium detected by the calcium indicator probe indo-1 and the redistribution kinetics of multiple vital dyes placed in cells undergoing cell fusion.  相似文献   

13.
The combination of temporal and spectral resolution in fluorescence microscopy based on long-lived luminescent labels offers a dramatic increase in contrast and probe selectivity due to the suppression of scattered light and short-lived autofluorescence. We describe various configurations of a fluorescence microscope integrating spectral and microsecond temporal resolution with conventional digital imaging based on CCD cameras. The high-power, broad spectral distribution and microsecond time resolution provided by microsecond xenon flashlamps offers increased luminosity with recently developed fluorophores with lifetimes in the submicrosecond to microsecond range. On the detection side, a gated microchannel plate intensifier provides the required time resolution and amplification of the signal. Spectral resolution is achieved with a dual grating stigmatic spectrograph and has been applied to the analysis of luminescent markers of cytochemical specimens in situ and of very small volume elements in microchambers. The additional introduction of polarization optics enables the determination of emission polarization; this parameter reflects molecular orientation and rotational mobility and, consequently, the nature of the microenvironment. The dual spectral and temporal resolution modes of acquisition complemented by a posteriori image analysis gated on the spatial, spectral, and temporal dimensions lead to a very flexible and versatile tool. We have used a newly developed lanthanide chelate, Eu-DTPA-cs124, to demonstrate these capabilities. Such compounds are good labels for time-resolved imaging microscopy and for the estimation of molecular proximity in the microscope by fluorescence (luminescence) resonance energy transfer and of molecular rotation via fluorescence depolarization. We describe the spectral distribution, polarization states, and excited-state lifetimes of the lanthanide chelate crystals imaged in the microscope.  相似文献   

14.
We report a reconstruction method to achieve high spatial resolution for hyperspectral imaging of chromophore features in skin in vivo. The method utilizes an established structure‐adaptive normalized convolution algorithm to reconstruct high spatial resolution of hyperspectral images from snapshot low‐resolution hyperspectral image sequences captured by a snapshot spectral camera. The reconstructed images at chromophore‐sensitive wavebands are used to map the skin features of interest. We demonstrate the method experimentally by mapping the blood perfusion and melanin features (moles) on the facial skin. The method relaxes the constrains of the relatively low spatial resolution in the snapshot hyperspectral camera, making it more usable in imaging applications.  相似文献   

15.
The aim of this study was to proof applicability of hyperspectral imaging for the analysis and classification of human mucosal surfaces in vivo. The larynx as a prototypical anatomically well‐defined surgical test area was analyzed by microlaryngoscopy with a polychromatic lightsource and a synchronous triggered monochromatic CCD‐camera. Image stacks (5 benign, 7 malignant tumors) were analyzed by established software (principal component analysis PCA, hyperspectral classification, spectral profiles). Hyperspectral image datacubes were analyzed and classified by conventional software. In PCA, images at 590–680 nm loaded most onto the first PC which typically contained 95% of the total information. Hyperspectral classification clustered the data highlighting altered mucosa. The spectral profiles clearly differed between the different groups. Hyperspectral imaging can be applied to mucosal surfaces. This approach opens the way to analyze spectral characteristics of histologically different lesions in order to build up a spectral library and to allow non‐touch optical biopsy. (© 2012 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

16.
A correlative bright-field and hyperspectral analysis of full-thickness, cutaneous wounds in a porcine model was undertaken to investigate the efficacy of hyperspectral imaging as an alternate method for wound identification. Analysis of a randomly selected specimen yielded distinct spectral signatures for cutaneous regions of interest including the epidermis, injured dermis, and normal dermis. The scanning of the entire specimen group using these hyperspectral signatures revealed an exclusionary, pseudo-color pattern whereby a central wound region was consistently defined by a unique spectral signature. An algorithm was derived as an objective tool for the comparison of the wound regions defined by the hyperspectral classification versus the pathologists' manual tracings. The dimensions of the wound identified in the hyperspectral assay did not differ significantly from the wound region identified by the pathologists using standard bright-field microscopy. These data indicate that hyperspectral analysis may provide a high-throughput alternative for wound estimation that approximates standard bright-field imaging and pathologist evaluation.  相似文献   

17.
Steady-state and time-resolved fluorescence properties of probes incorporated into living cells give information about the microenvironment near the probe. We have extended studies of spatially averaged fluorescence anisotropy (r) by using an epifluorescence microscope, equipped with excitation and emission polarizers and an image analysis system, to map r of nonoriented fluorophores incorporated into cultured cells. With this imaging system, r for reflected light or glycogen scattering solutions was greater than 0.98. Measurement of r over the range 0.01-0.35 for fluorophores in bulk solution and in thin capillary tubes placed side-by-side gave values equivalent to r measured by cuvette fluorometry. Cytoplasmic viscosity (eta) in Madin-Darby canine kidney (MDCK) cells and Swiss 3T3 fibroblasts was examined from anisotropy images and time-resolved fluorescence decay of the cytoplasmic probes 2,7-bis-carboxyethyl-5 (and 6)-carboxy-fluorescein (BCECF) and indo-1. Nanosecond lifetimes and anisotropy decay were measured using a pulsed light source and gated detector interfaced to the epifluorescence microscope. Anisotropy images of BCECF in MDCK cells revealed two distinct regions of r: one from the cytoplasm (r = 0.144 +/- 0.008) and a second appearing at late times from the interstitial region (r = 0.08 +/- 0.03), representing BCECF trapped beneath the tight junctions. Anisotropy values, taken together with intracellular life-times and the calibration between r and eta/tau f for water/glycerol mixtures, gave eta values of 10-13 cP at 23 degrees C. These values assume little fluorophore binding to intracellular components and are therefore upper limits to cytoplasmic viscosity. These data establish a new methodology to map anisotropy in intact cells to examine the role of fluidity in cellular physiology.  相似文献   

18.
Single-molecule super-resolution microscopy allows imaging of fluorescently-tagged proteins in live cells with a precision well below that of the diffraction limit. Here, we demonstrate 3D sectioning with single-molecule super-resolution microscopy by making use of the fitting information that is usually discarded to reject fluorophores that emit from above or below a virtual-''light-sheet'', a thin volume centred on the focal plane of the microscope. We describe an easy-to-use routine (implemented as an open-source ImageJ plug-in) to quickly analyse a calibration sample to define and use such a virtual light-sheet. In addition, the plug-in is easily usable on almost any existing 2D super-resolution instrumentation. This optical sectioning of super-resolution images is achieved by applying well-characterised width and amplitude thresholds to diffraction-limited spots that can be used to tune the thickness of the virtual light-sheet. This allows qualitative and quantitative imaging improvements: by rejecting out-of-focus fluorophores, the super-resolution image gains contrast and local features may be revealed; by retaining only fluorophores close to the focal plane, virtual-''light-sheet'' single-molecule localisation microscopy improves the probability that all emitting fluorophores will be detected, fitted and quantitatively evaluated.  相似文献   

19.
AbstractNear-infrared (NIR) fluorophores are the focus of extensive research for combined molecular imaging and hyperthermia. In this study, we showed that the cyanine dye IR820 has optical and thermal generation properties similar to those of indocyanine green (ICG) but with improved in vitro and in vivo stability. The fluorescent emission of IR820 has a lower quantum yield than ICG but less dependence of the emission peak location on concentration. IR820 demonstrated degradation half-times approximately double those of ICG under all temperature and light conditions in aqueous solution. In hyperthermia applications, IR820 generated lower peak temperatures than ICG (4-9%) after 3-minute laser exposure. However, there was no significant difference in hyperthermia cytotoxicity, with both dyes causing significant cell growth inhibition at concentrations ≥ 5 μM. Fluorescent images of cells with 10 μM IR820 were similar to ICG images. In rats, IR820 resulted in a significantly more intense fluorescence signal and significantly higher organ dye content than for ICG 24 hours after intravenous dye administration (p < .05). Our study shows that IR820 is a feasible agent in experimental models of imaging and hyperthermia and could be an alternative to ICG when greater stability, longer image collection times, or more predictable peak locations are desirable.  相似文献   

20.
Principles and practices of laser scanning confocal microscopy   总被引:9,自引:0,他引:9  
The laser scanning confocal microscope (LSCM) is an essential tool for many biomedical imaging applications at the level of the light microscope. The basic principles of confocal microscopy and the evolution of the LSCM into today's sophisticated instruments are outlined. The major imaging modes of the LSCM are introduced including single optical sections, multiple wavelength images, three-dimensional reconstructions, and living cell and tissue sequences. Practical aspects of specimen preparation, image collection, and image presentation are included along with a primer on troubleshooting the LSCM for the novice.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号