首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
P Prentki  H M Krisch 《Gene》1982,17(2):189-196
The construction of a plasmid vector which facilitates the cloning and recovery of blunt-ended DNA fragments is described. This plasmid, called pHP34, differs from pBR322 by a 10-bp insertion which introduces a unique SmaI site immediately flanked by two EcoRI sites. Blunt-ended DNA fragments cloned in the SmaI site can be recovered by digestion with EcoRI. Small cloned fragments can be chemically sequenced using a strategy which does not require their purification. The use of a plasmid related to pHP34 for in vitro mutagenesis by the insertion of a DNA linker fragment conferring an antibiotic resistance is also discussed.  相似文献   

2.
The site-specific deletion in plasmid pBR322   总被引:3,自引:0,他引:3  
The formation of a deletion derivative of plasmid pBR322, designated pBR322 delta 1, was observed during cloning of various eukaryotic DNAs, when the BamHI site of the plasmid vector was used for construction of the recombinant molecules. The restriction analysis of six independently isolated pBR322 delta 1 plasmids allowed establishment of their complete identity. Similar deletion derivatives were also formed as a result of transformation of Escherichia coli cells by the linear form of vector pBR322 produced by BamHI cleavage, but not by SalI or HindIII. The endpoints of the deletion in one of the pBR322 delta 1 plasmids occurred at positions 375 and 16666 bp from the EcoRI site, as determined by sequence analysis. Formation of pBR322 delta 1 is most probably due to site-specific recombination between the sequence in the 1666-1670 bp region and the BamHI end of the linear pBR322 molecule. THe deletion was not controlled by the recA system of the host bacteria.  相似文献   

3.
4.
In the accompanying communication we showed that a 2 kb EcoRI-BamHI restriction fragment from the pfkA-rha interval of the Escherichia coli K-12 chromosome fully complemented a chromosomal cpxA mutation when the fragment was cloned in pBR325. The same fragment cloned in pBR322 lacked any complementing activity. We show here that minicells containing the pBR325 derivative (pRA310) synthesized a 33 kDa polypeptide, designated phi 33, that was not synthesized in minicells containing the pBR322 derivative (pRA311) or either of the parent plasmids. Synthesis of the phi 33 polypeptide did not occur in minicells containing Tn5 insertion alleles of pRA310 that inactivated its cpxA complementing activity. These insertions mapped within the vector cat (chloramphenicol acetyltransferase gene) sequence immediately adjacent to the EcoRI site of pRA310 and within the 700-800 bp of the cloned EcoRI-BamHI fragment immediately adjacent to the EcoRI site. Tn5 insertions located within the fragment but closer to the BamHI terminus affected neither the cpxA complementing activity of pRA310 nor synthesis of the phi 33 polypeptide in minicells. Plasmid pRA311 could be converted to a plasmid with cpxA complementing activity by cloning into its EcoRI site a restriction fragment containing a hybrid trp-lacUV5 promoter, the lacZ ribosome binding site, and the first eight lacZ codons.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
Sequences representative of most of the bovine herpesvirus 1 (Cooper strain) DNa were cloned in the plasmid vector pBR322 at the HindIII site. EcoRI, HpaI, and BamHI restriction endonuclease sites were mapped in each of the cloned fragments, and this information was used to construct a restriction endonuclease cleavage site map of the entire viral genome for the four enzymes.  相似文献   

6.
The ability to clone a variety of sequences with varying capabilities of adopting non-B structures (left-handed Z-DNA, cruciforms or triplexes) into three loci of pBR322 was investigated. In general, the inserts were stable (non-deleted) in the EcoRI site (an untranslated region) of pBR322. However, sequences most likely to adopt left-handed Z-DNA or triplexes in vivo suffered deletions when cloned into the BamHI site, which is located in the tetracycline resistance structural gene (tet). Conversely, when the promoter for the tet gene was altered by filling-in the unique HindIII or ClaI sites, the inserts in the BamHI site were not deleted. Concomitantly, the negative linking differences of the plasmids were reduced. Also, inserts with a high potential to adopt Z-DNA conformations were substantially deleted in the PvuII site of pBR322 (near the replication origin and the copy number control region), but were less deleted if the tet promoter was insertion-mutated. The deletion phenomena are due to the capacity of these sequences to adopt left-handed Z-DNA or triplexes in vivo since shorter inserts, less prone to form non-B DNA structures, or random sequences, did not exhibit this behavior. Sequences with the potential to adopt cruciforms were stable in all sites under all conditions. These results reveal a complex interrelationship between insert deletions (apparently the result of genetic recombination), negative supercoiling, and the formation of non-B DNA structures in living Escherichia coli cells.  相似文献   

7.
W Seufert  W Messer 《Cell》1987,48(1):73-78
We analyzed the significance of DnaA protein binding to the origin region of pBR322. Replication of pBR322 in vitro was stimulated by DnaA protein. Moreover, the primosomal component protein i was no longer essential for replication after addition of DnaA protein, whereas, among others, proteins DnaB and DnaG were still required. Complete replication products were synthesized under these conditions. We constructed pBR322 deletion derivatives missing the primosome assembly sites. Efficient replication of these deletion plasmids was dependent on the presence of DnaA protein and its binding site, but independent of protein i activity. We conclude that DnaA protein binding to the pBR322 origin region substitutes for primosome assembly by directing DnaB, DnaC, and DnaG proteins to the origin. We term this process DnaA-directed pre-replisome formation.  相似文献   

8.
The HpaI E fragment (0-4.5 map units) of adenovirus type 2 (Ad2) DNA was cloned in the plasmid vector pBR322. Excision of the viral insert with PstI and XbaI generated a fragment which comigrated with Ad2 XbaI-E (0-3.8 map units), and this fragment was ligated to the 3.8-100 fragment generated by XbaI cleavage of the DNA of the Ad5 mutant, dl309 (N. Jones and T. Shenk, Cell 17:683-689, 1979). Transfection with the ligation products resulted in the production of progeny virus which was able to replicate on both HeLa and line 293 cells, demonstrating the biological activity of the sequences rescued from the plasmid. Small deletions were introduced around the SmaI site (map position 2.8) within the cloned viral insert, and the altered DNA sequences were reintroduced into progeny virus as described above. The mutant viruses grew well on line 293 cells but plaqued with greatly reduced efficiency on HeLa cells, exhibiting a host range phenotype similar to previously described mutants with lesions located within this region of the genome. When plasmid-derived left-end fragments containing pBR322 DNA sequences to the left of map position 0 were ligated to the 3.8-100 fragment of dl309 DNA, the infectivity of the ligation products was not reduced. However, all progeny viruses examined yielded normal-size restriction enzyme fragments from their left-hand ends, indicating that the bulk of the pBR322 DNA sequences are removed either prior to or as a consequence of the replication of the transfecting DNA molecules.  相似文献   

9.
10.
The region of R plasmid NR1 that is capable of mediating autonomous replication was cloned by using EcoRI, SalI, and PstI restriction endonucleases. The only EcoRI fragment capable of mediating autonomous replication in either a pol+ or a polA host was fragment B. SalI fragment E joined in native orientation with the part of SalI fragment C that overlapped with EcoRI fragment B, and also two contiguous PstI fragments of sizes 1.6 and 1.1 kilobases from EcoRI fragment B-mediated autonomous replication. When these individual SalI fragments were cloned onto plasmid pBR313 or the individual PstI fragments were cloned onto plasmid pBR322, none of these single fragments could rescue the replication of the ColE1-like vectors in a polA host, even in the presence of a compatible "helper" plasmid derived from a copy mutant of NR1. In contrast to the results reported for closely related R plasmid R6, EcoRI fragment A of NR1 could not rescue the replication of ColE1 derivative RSF2124 in a polA(Am) mutant or in a polA(Ts) mutant at the restrictive temperature. Although capable of autonomous replication, EcoRI fragment B of NR1 (or smaller replicator fragments cloned from it by using other restriction enzymes) was not stably inherited in the absence of selection for the recombinant plasmid. When EcoRI fragment B was ligated to EcoRI fragment A of NR1, the recombinant plasmid was stable. Thus, EcoRI fragment A contained a stability (stb) function. The stb function did not act in trans since EcoRI fragment B was not stably inherited when a ColE1 derivative (RSF2124) ligated to EcoRI fragment A was present in the same cell. A cointegrate plasmid consisting of EcoRI fragment B of NR1 ligated to RSF2124 was also not stably inherited, whereas only EcoRI fragment B was unstable when both RSF2124 and EcoRI fragment B coexisted as autonomous plasmids in the same cell. The incompatibility gene of NR1 was shown to be located within the region of overlap between SalI fragment E and the PstI 1.1-kilobase fragment. A copy mutant of NR1 (called pRR12) was found to have greatly reduced incompatibility with NR1; this Inc- phenotype is cis dominant.  相似文献   

11.
Isolation and characterization of rat ribosomal DNA clones   总被引:8,自引:0,他引:8  
Four EcoRI fragments, which contain the transcribed portion of the rat rDNA repeat, have been isolated from a rat genome library cloned in lambda Charon 4A vector. Three of the fragments, 9.6, 6.7, and 4.5 kb, from clones lambda ChR-B4, lambda Nr-42, and lambda ChR-C4B9, contained part of the 5'-NTS, the 5'-ETS, 18S rDNA, ITS-1, 5.8S rDNA, 28S rDNA and approximately 3.5 kb of the 3'-NTS. Two EcoRI fragments, from clones lambda ChR-B4 and lambda ChR-B7E12, which coded for the 5'-NTS, the ETS, and most of the 18S rDNA, differed by 1 kb near the EcoRI site upstream of the 5' terminus of 18S rRNA. Restriction maps of the cloned DNA fragments were constructed by cleavage of the fragments with various restriction endonucleases and Southern hybridization with 18S, 5.8S, and 28S rRNA. These maps were confirmed and extended by subcloning several regions of the repeat in pBR322.  相似文献   

12.
Cloned human polyomavirus JC DNA can transform human amnion cells.   总被引:16,自引:11,他引:5       下载免费PDF全文
The genome of the human polyomavirus JC (Mad-1 strain) was molecularly cloned in Escherichia coli by using the plasmid vector pBR322. Recombinant DNA molecules were constructed with the entire JC genome inserted either at its unique EcoRI site at 0.0 map units or at its unique BamHI site at 0.51 map units. Viral DNA from each of these recombinant plasmids was capable of transforming human amnion cells, and cell lines established from transformed foci were positive for JC tumor antigen as assayed by indirect immunofluorescence.  相似文献   

13.
Seven oligonucleotide primers complementary to the plasmid vector pBR322 at positions adjacent to five of the unique restriction endonuclease cleavage sites (EcoRI, HindIII, BamHI, SalI and PstI) have been chemically synthesized. The polarity of the primers is such that any DNA inserted at one or a combination of two of the above restriction sites may be sequenced by the chain termination method using one of the synthetic DNA primers. One of the primers for sequencing inserts at the PstI site of pBR322 is also complementary to the M13 phage vector designated bla6. This set of universal primers is useful for rapid sequence determination of DNA cloned into pBR322 or M13bla6.  相似文献   

14.
15.
Steady-state parameters governing cleavage of pBR322 DNA by EcoRI endonuclease are highly sensitive to ionic environment, with K(m) and k(cat) increasing 1,000-fold and 15-fold, respectively, when ionic strength is increased from 0.059 to 0.23 M. By contrast, pre-steady-state analysis has shown that recognition, as well as first and second strand cleavage events that occur once the enzyme has arrived at the EcoRI site, are essentially insensitive to ionic strength, and has demonstrated that the rate-limiting step for endonuclease turnover occurs after double-strand cleavage under all conditions tested. Furthermore, processive cleavage of a pBR322 variant bearing two closely spaced EcoRI sites is governed by the same turnover number as hydrolysis of parental pBR322, which contains only a single EcoRI sequence, ruling out slow release of the enzyme from the cleaved site or a slow conformational change subsequent to double-strand cleavage. We attribute the effects of ionic strength on steady-state parameters to nonspecific endonuclease.DNA interactions, reflecting facilitated diffusion processes, that occur prior to EcoRI sequence recognition and subsequent to DNA cleavage.  相似文献   

16.
Mapping of the 3'-end positions of simian virus 40 nascent strands   总被引:5,自引:0,他引:5  
Using the instability of replication loops as the basis for the isolation of replication origins, we have undertaken an analysis of the 3' ends of the extruded nascent strands of replicating simian virus 40 (SV40) DNA. DNA fragments containing the SV40 origin of replication were obtained by digesting highly purified replicative intermediates of SV40 with BamHI and then heating at 55 degrees C for 16h. The origin-containing fragments extruded under these conditions were purified and cloned into pBR322. We used restriction mapping to analyze 640 clones of the 674 that contained SV40 sequences. A large majority of the clones were found to contain rearrangements in the sequences of either pBR322 or SV40 and were disregarded. Those clones that contained legitimate SV40 and pBR322 sequences were presumed to have been derived from the extruded SV40 nascent strands and were further analyzed. A combination of restriction enzymes was used that allowed us to define the 3' ends with an accuracy of +/- 20 base-pairs. The results of restriction analysis were confirmed by nucleotide sequence analysis of selected clones. The results show that the replication forks move with a high degree of symmetry, with respect to the initiation site of DNA replication, and are consistent with the existence of pause sites for the extension of replication forks. From the clones analyzed, it appears that the center of the replication bubble is to the early side of the BglI site.  相似文献   

17.
UV light irradiation increases genetic instability by causing mutations and deletions. The mechanism of UV-induced rearrangements was investigated making use of deletion-prone plasmids. Chimeric plasmids carrying pBR322 and M13 replication origins undergo deletions that join the M13 replication origin to a random nucleotide. A restriction fragment was UV irradiated, introduced into such a hybrid plasmid and deletions formed at the M13 origin were analysed. In most of the deletant molecules, the M13 replication nick site was linked to a nucleotide in the irradiated fragment, showing that UV lesions are deletion hotspots. These deletions were independent of the UvrABC excision repair proteins, suggesting that the deletogenic structure is the lesion itself and not a repair intermediate. They were not found in the absence of M13 replication, indicating that they result from the encounter of the M13 replication fork with the UV lesion. Furthermore, UV-induced deletions occurred independently of pBR322 replication. We conclude that, in contrast to pBR322 replication forks, M13 replication forks blocked by UV lesions are deletion prone. We propose that the deletion-prone properties of a UV-arrested polymerase depend on the associated helicase.  相似文献   

18.
R J Zagursky  M L Berman 《Gene》1984,27(2):183-191
We have constructed chimeric plasmid vectors with the origin and intergenic region from M13 phage cloned into the PvuII ( pZ145 ) and AhaIII ( pZ150 , pZ152 ) sites of pBR322. In the absence of M13 phage, these plasmids replicate like any other ColE1-derived plasmid and confer both ampicillin and tetracycline resistance (Amp, Tet). Upon infection with M13 phage, the viral origin present on the plasmids permits phage-directed plasmid replication and results in high yields of single-stranded (ss) plasmid DNA in M13-like particles. This ssDNA, which represents only one of the plasmid strands, is useful as a substrate for rapid DNA sequence determination by the dideoxy sequencing method described by Sanger et al. (1977). Since these plasmids contain an intact pBR322, the intergenic region can be transferred onto most pBR322 derivatives to yield ss plasmid DNA without affecting the recipient plasmid for further studies. We also constructed a deletion derivative of pZ145 , plasmid pZ146 , that does not exhibit interference with the growth of the M13 helper, although this plasmid is encapsidated into phage particles. This result confirms the theory that the intergenic region consists of two domains: one domain being a segment involved in phage morphogenesis and the other being a region of functional origin which interferes with M13 replication.  相似文献   

19.
Bacteriophage T7 DNA is a linear duplex molecule with a 160 base-pair direct repeat (terminal redundancy) at its ends. During replication, large DNA concatemers are formed, which are multimers of the T7 genome linked head to tail through recombination at the terminal redundancy. We define the sequence that results from this recombination, a mature right end joined to the left end of T7 DNA, as the concatemer junction. To study the processing and packaging of T7 concatemers into phage particles, we have cloned the T7 concatemer junction into a plasmid vector. This plasmid is efficiently (at least 15 particles/infected cell) packaged into transducing particles during a T7 infection. These transducing particles can be separated from T7 phage by sedimentation to equilibrium in CsCl. The packaged plasmid DNA is a linear concatemer of about 40 x 10(3) base-pairs with ends at the expected T7 DNA sequences. Thus, the T7 concatemer junction sequence on the plasmid is recognized for processing and packaging by the phage system. We have identified a T7 DNA replication origin near the right end of the T7 genome that is necessary for efficient plasmid packaging. The origin, which is associated with a T7 RNA polymerase promoter, causes amplification of the plasmid DNA during T7 infection. The amplified plasmid DNA sediments very rapidly and contains large concatemers, which are expected to be good substrates for the packaging reaction. When cloned in pBR322, a sequence containing only the mature right end of T7 DNA is sufficient for efficient packaging. Since this sequence does not contain DNA to the right of the site where a mature T7 right end is formed, it was expected that right ends would not form on this DNA. In fact, with this plasmid the right end does not form at the normal T7 sequence but is instead formed within the vector. Apparently, the T7 packaging system can also recognize a site in pBR322 DNA to produce an end for packaging. This site is not recognized solely by a "headful" mechanism, since there can be considerable variation in the amount of DNA packaged (32 x 10(3) to 42 x 10(3) base-pairs). Furthermore, deletion of this region from the vector DNA prevents packaging of the plasmid. The end that is formed in vector DNA is somewhat heterogeneous. About one-third of the ends are at a unique site (nucleotide 1712 of pBR322), which is followed by the sequence 5'-ATCTGT-3'. This sequence is also found adjacent to the cut made in a T7 DNA concatemer to produce a normal T7 right end.  相似文献   

20.
The unintegrated closed circular form of viral DNA prepared from NIH3T3 cells infected with Kirsten murine sarcoma virus was cloned into bacterial plasmid pBR322. The closed circular DNA, which consisted of two different-sized populations, was enriched from the virus-infected cells, linearized with BamHI, and inserted into pBR322 DNA. Four different recombinant DNAs (clones 2, 4, 6, and 7) were obtained, and a physical map of each was constructed by using various restriction enzymes. Clone 4 DNA had the largest insertion, corresponding to a complete copy of the linear DNA. This suggested that this insertion contained two copies of the 0.55-kilobase pair long terminal redundant sequence. Clone 2 and clone 6 insertion DNAs had deletions of 0.2 and 0.5 kilobase pair, respectively, which mapped near the right end (3' side of viral RNA) of the linear DNA. Clone 7 DNA appeared to have a deletion of a single copy of the large terminal redundant sequence. Transfection of BALB3T3 cells with the clone 4 DNA insertion showed that this DNA had transforming activity. The efficiency of transfection with clone 4 Kirsten murine sarcoma virus DNA was enhanced eightfold by inserting EcoRI-cleaved viral DNA into the EcoRI site of pBR322. The EcoRI-inserted DNA produced foci with single-hit kinetics, suggesting that a single molecule of Kirsten murine sarcoma virus DNA can induce transformation. Results of transfections with EcoRI-inserted Kirsten murine sarcoma virus DNA cleaved with various restriction enzymes suggested that the first 3.3-kilobase pair region at the left end of the linear DNA is important for the initiation of transformation or maintenance of transformation or both.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号