首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The intracellular bacterial pathogen Legionella pneumophila subverts host membrane transport pathways to promote fusion of vesicles exiting the endoplasmic reticulum (ER) with the pathogen-containing vacuole. During infection there is noncanonical pairing of the SNARE protein Sec22b on ER-derived vesicles with plasma membrane (PM)-localized syntaxin proteins on the vacuole. We show that the L.?pneumophila Rab1-targeting effector DrrA is sufficient to stimulate this noncanonical SNARE association and promote membrane fusion. DrrA activation of the Rab1 GTPase on PM-derived organelles stimulated the tethering of ER-derived vesicles with the PM-derived organelle, resulting in vesicle fusion through the pairing of Sec22b with the PM syntaxin proteins. Thus, the effector protein DrrA stimulates a host membrane transport pathway that enables ER-derived vesicles to remodel a PM-derived organelle, suggesting that Rab1 activation at the PM is sufficient to promote the recruitment and fusion of ER-derived vesicles.  相似文献   

2.
Membrane trafficking involves the collection of cargo into nascent transport vesicles that bud off from a donor compartment, translocate along cytoskeletal tracks, and then dock and fuse with their target membranes. Docking and fusion involve initial interaction at a distance (tethering), followed by a closer interaction that leads to pairing of vesicle SNARE proteins (v-SNAREs) with target membrane SNAREs (t-SNAREs), thereby catalyzing vesicle fusion. When tethering cannot take place, transport vesicles accumulate in the cytoplasm. Tethering is generally carried out by two broad classes of molecules: extended, coiled-coil proteins such as the so-called Golgin proteins, or multi-subunit complexes such as the Exocyst, COG or Dsl complexes. This review will focus on the most recent advances in terms of our understanding of the mechanism by which tethers carry out their roles, and new structural insights into tethering complex transactions.  相似文献   

3.
In mammals, coat complex II (COPII)-coated transport vesicles deliver secretory cargo to vesicular tubular clusters (VTCs) that facilitate cargo sorting and transport to the Golgi. We documented in vitro tethering and SNARE-dependent homotypic fusion of endoplasmic reticulum-derived COPII transport vesicles to form larger cargo containers characteristic of VTCs ( Xu, D., and Hay, J. C. (2004) J. Cell Biol. 167, 997-1003). COPII vesicles thus appear to contain all necessary components for homotypic tethering and fusion, providing a pathway for de novo VTC biogenesis. Here we demonstrate that antibodies against the endoplasmic reticulum/Golgi SNARE Syntaxin 5 inhibit COPII vesicle homotypic tethering as well as fusion, implying an unanticipated role for SNAREs upstream of fusion. Inhibition of SNARE complex access and/or disassembly with dominant-negative alpha-soluble NSF attachment protein (SNAP) also inhibited tethering, implicating SNARE status as a critical determinant in COPII vesicle tethering. The tethering-defective vesicles generated in the presence of dominant-negative alpha-SNAP specifically lacked the Rab1 effectors p115 and GM130 but not other peripheral membrane proteins. Furthermore, Rab effectors, including p115, were shown to be required for homotypic COPII vesicle tethering. Thus, our results demonstrate a requirement for SNARE-dependent tether recruitment and function in COPII vesicle fusion. We anticipate that recruitment of tether molecules by an upstream SNARE signal ensures that tethering events are initiated only at focal sites containing appropriately poised fusion machinery.  相似文献   

4.
Abstract

Membrane trafficking involves the collection of cargo into nascent transport vesicles that bud off from a donor compartment, translocate along cytoskeletal tracks, and then dock and fuse with their target membranes. Docking and fusion involve initial interaction at a distance (tethering), followed by a closer interaction that leads to pairing of vesicle SNARE proteins (v-SNAREs) with target membrane SNAREs (t-SNAREs), thereby catalyzing vesicle fusion. When tethering cannot take place, transport vesicles accumulate in the cytoplasm. Tethering is generally carried out by two broad classes of molecules: extended, coiled-coil proteins such as the so-called Golgin proteins, or multi-subunit complexes such as the Exocyst, COG or Dsl complexes. This review will focus on the most recent advances in terms of our understanding of the mechanism by which tethers carry out their roles, and new structural insights into tethering complex transactions.  相似文献   

5.
SNARE proteins (VAMP2, syntaxin4, and SNAP23) have been thought to play a key role in GLUT4 trafficking by mediating the tethering, docking and subsequent fusion of GLUT4-containing vesicles with the plasma membrane. The precise functions of these proteins have remained elusive, however. We have now shown that depletion of the vesicle SNARE (v-SNARE) VAMP2 by RNA interference in 3T3-L1 adipocytes inhibited the fusion of GLUT4 vesicles with the plasma membrane but did not affect tethering of the vesicles to the membrane. In contrast, depletion of the target SNAREs (t-SNAREs) syntaxin4 or SNAP23 resulted in impairment of GLUT4 vesicle tethering to the plasma membrane. Our results indicate that the t-SNAREs syntaxin4 and SNAP23 are indispensable for the tethering of GLUT4 vesicles to the plasma membrane, whereas the v-SNARE VAMP2 is not required for this step but is essential for the subsequent fusion event.  相似文献   

6.
Assembly of cognate SNARE proteins into SNARE complexes is required for many intracellular membrane fusion reactions. However, the mechanisms that govern SNARE complex assembly and disassembly during fusion are not well understood. We have devised a new in vitro cross-linking assay to monitor SNARE complex assembly during fusion of endoplasmic reticulum (ER)-derived vesicles with Golgi-acceptor membranes. In Saccharomyces cerevisiae, anterograde ER-Golgi transport requires four SNARE proteins: Sec22p, Bos1p, Bet1p, and Sed5p. After tethering of ER-derived vesicles to Golgi-acceptor membranes, SNARE proteins are thought to assemble into a four-helix coiled-coil bundle analogous to the structurally characterized neuronal and endosomal SNARE complexes. Molecular modeling was used to generate a structure of the four-helix ER-Golgi SNARE complex. Based on this structure, cysteine residues were introduced into adjacent SNARE proteins such that disulfide bonds would form if assembled into a SNARE complex. Our initial studies focused on disulfide bond formation between the SNARE motifs of Bet1p and Sec22p. Expression of SNARE cysteine derivatives in the same strain produced a cross-linked heterodimer of Bet1p and Sec22p under oxidizing conditions. Moreover, this Bet1p-Sec22p heterodimer formed during in vitro transport reactions when ER-derived vesicles containing the Bet1p derivative fused with Golgi membranes containing the Sec22p derivative. Using this disulfide cross-linking assay, we show that inhibition of transport with anti-Sly1p antibodies blocked formation of the Bet1p-Sec22p heterodimer. In contrast, chelation of divalent cations did not inhibit formation of the Bet1p-Sec22p heterodimer during in vitro transport but potently inhibited Golgi-specific carbohydrate modification of glyco-pro-alpha factor. This data suggests that Ca(2+) is not directly required for membrane fusion between ER-derived vesicles and Golgi-acceptor membranes.  相似文献   

7.
高等植物细胞含有复杂的内膜系统,通过其特有的膜泡运输机制来完成细胞内和细胞间的物质交流。膜泡运输主要包括运输囊泡的出芽、定向移动、拴留和膜融合4个过程。这4个过程受到许多因子的调控,如Coat、SM、Tether、SNARE和Rab蛋白等,其中SNARE因子在膜融合过程中发挥重要功能。SNARE因子是小分子跨膜蛋白,分为定位于运输囊泡上的v-SNARE和定位于靶位膜上的t-SNARE,两类SNARE结合形成SNARE复合体,促进膜融合的发生。SNARE蛋白在调控植物体生长发育以及对外界环境响应等生理过程中起重要作用。该文对模式植物拟南芥(Arabidopsis thaliana)SNARE因子的最新细胞内定位和功能分析等研究进展进行了概述。  相似文献   

8.
Multisubunit tethering complexes may contribute to the specificity of membrane fusion events by linking transport vesicles to their target membrane in an initial recognition event that promotes SNARE assembly. However, the interactions that link tethering factors to the other components of the vesicle fusion machinery are still largely unknown. We have previously identified three subunits of a Golgi-localized complex (the Vps52/53/54 complex) that is required for retrograde transport to the late Golgi. This complex interacts with a Rab and a SNARE protein found at the late Golgi and is related to two other multisubunit tethering complexes: the COG complex and the exocyst. Here we show that the Vps52/53/54 complex has an additional subunit, Vps51p. All four members of this tetrameric GARP (Golgi-associated retrograde protein) complex are required for two distinct retrograde transport pathways, from both early and late endosomes, back to the TGN. vps51 mutants exhibit a distinct phenotype suggestive of a regulatory role. Indeed, we find that Vps51p mediates the interaction between Vps52/53/54 and the t-SNARE Tlg1p. The binding of this small, coiled-coil protein to the conserved N-terminal domain of the t-SNARE therefore provides a crucial link between components of the tethering and the fusion machinery.  相似文献   

9.
膜泡运输是不同细胞器间进行物质传递的基本方式,分为4个重要步骤:囊泡的出芽、转运、拴系和融合。在此过程中,有许多相关因子参与调控,如包被蛋白、Rab蛋白、拴系因子、SM蛋白和SNARE等。拴系因子在运输囊泡和靶位膜发生接触的最初阶段起重要调控作用,多数拴系因子形成大的多亚基复合体发挥功能。目前,关于拴系因子的功能已经有了一定的了解,在此,我们对酵母、哺乳动物以及植物细胞中的已知拴系因子的特点和功能进行了概述。  相似文献   

10.
Delivery of transport vesicles to their receptor compartment involves tethering, priming, and fusion. Soluble NSF attachment protein-alpha (alphaSNAP) mediates the disruption of SNAREs by N-ethylmaleimide sensitive factor (NSF) and was employed to determine the hierarchy of proteins responsible for intra-Golgi protein transport. The N-terminal 23 amino acids of alphaSNAP are necessary for SNARE binding. The antibody 2F10 recognizes this SNARE interaction domain of alphaSNAP and inhibits intra-Golgi protein transport reversibly. This antibody was applied to modify the transport assay to determine the protein requirements relative to the action of alphaSNAP and NSF. We found that 1) p115 acts independently of alphaSNAP and NSF, 2) SNAREs are required after tethering and interact selectively after activation by alphaSNAP and NSF, and 3) Rab proteins act after SNARE activation and before fusion.  相似文献   

11.
The SNARE proteins are required for membrane fusion during intracellular vesicular transport and for its specificity. Only the unique combination of SNARE proteins (cognates) can be bound and can lead to membrane fusion, although the characteristics of the possible specificity of the binding combinations encoded in the SNARE sequences have not yet been determined. We discovered by whole genome sequence analysis that sequence motifs (conserved sequences) in the SNARE motif domains for each protein group correspond to localization sites or transport pathways. We claim that these motifs reflect the specificity of the binding combinations of SNARE motif domains. Using these motifs, we could classify SNARE proteins from 48 organisms into their localization sites or transport pathways. The classification result shows that more than 10 SNARE subgroups are kingdom specific and that the SNARE paralogs involved in the plasma membrane-related transport pathways have developed greater variations in higher animals and higher plants than those involved in the endoplasmic reticulum-related transport pathways throughout eukaryotic evolution.  相似文献   

12.
拟南芥SNARE因子在膜泡运输中的功能   总被引:1,自引:0,他引:1  
金红敏  李立新 《植物学报》2010,45(4):479-491
高等植物细胞含有复杂的内膜系统, 通过其特有的膜泡运输机制来完成细胞内和细胞间的物质交流。膜泡运输主要包括运输囊泡的出芽、定向移动、拴留和膜融合4个过程。这4个过程受到许多因子的调控, 如Coat、SM、Tether、SNARE和Rab蛋白等, 其中SNARE因子在膜融合过程中发挥重要功能。SNARE因子是小分子跨膜蛋白, 分为定位于运输囊泡上的v-SNARE和定位于靶位膜上的t-SNARE, 两类SNARE结合形成SNARE复合体, 促进膜融合的发生。SNARE蛋白在调控植物体生长发育以及对外界环境响应等生理过程中起重要作用。该文对模式植物拟南芥(Arabidopsis thaliana)SNARE因子的最新细胞内定位和功能分析等研究进展进行了概述。  相似文献   

13.
Fusion of transport vesicles with their target organelles involves specific membrane proteins, SNAREs, which form tight complexes bridging the membranes to be fused. Evidence from yeast and mammals indicates that Sec1 family proteins act as regulators of membrane fusion by binding to the target membrane SNAREs. In experiments with purified proteins, we now made the observation that the ER to Golgi core SNARE fusion complex could be assembled on syntaxin Sed5p tightly bound to the Sec1-related Sly1p. Sly1p also bound to preassembled SNARE complexes in vitro and was found to be part of a vesicular/target membrane SNARE complex immunoprecipitated from yeast cell lysates. This is in marked contrast to the exocytic SNARE assembly in neuronal cells where high affinity binding of N-Sec1/Munc-18 to syntaxin 1A precluded core SNARE fusion complex formation. We also found that the kinetics of SNARE complex formation in vitro with either Sly1p-bound or free Sed5p was not significantly different. Importantly, several presumably nonphysiological SNARE complexes easily generated with Sed5p did not form when the syntaxin was first bound to Sly1p. This indicates for the first time that a Sec1 family member contributes to the specificity of SNARE complex assembly.  相似文献   

14.
Vesicular transport between different membrane compartments is a key process in cell biology required for the exchange of material and information. The complex machinery that executes the formation and delivery of transport vesicles has been intensively studied and yielded a comprehensive view of the molecular principles that underlie the budding and fusion process. Tethering also represents an essential step in each trafficking pathway. It is mediated by Rab GTPases in concert with so‐called tethering factors, which constitute a structurally diverse family of proteins that share a similar role in promoting vesicular transport. By simultaneously binding to proteins and/or lipids on incoming vesicles and the target compartment, tethers are thought to bridge donor and acceptor membrane. They thus provide specificity while also promoting fusion. However, how tethering works at a mechanistic level is still elusive. We here discuss the recent advances in the structural and biochemical characterization of tethering complexes that provide novel insight on how these factors might contribute the efficiency of fusion.  相似文献   

15.
The role of specific membrane lipids in transport between endoplasmic reticulum (ER) and Golgi compartments is poorly understood. Using cell-free assays that measure stages in ER-to-Golgi transport, we screened a variety of enzyme inhibitors, lipid-modifying enzymes, and lipid ligands to investigate requirements in yeast. The pleckstrin homology (PH) domain of human Fapp1, which binds phosphatidylinositol-4-phosphate (PI(4)P) specifically, was a strong and specific inhibitor of anterograde transport. Analysis of wild type and mutant PH domain proteins in addition to recombinant versions of the Sac1p phosphoinositide-phosphatase indicated that PI(4)P was required on Golgi membranes for fusion with coat protein complex II (COPII) vesicles. PI(4)P inhibition did not prevent vesicle tethering but significantly reduced formation of soluble n-ethylmaleimide sensitive factor adaptor protein receptor (SNARE) complexes between vesicle and Golgi SNARE proteins. Moreover, semi-intact cell membranes containing elevated levels of the ER-Golgi SNARE proteins and Sly1p were less sensitive to PI(4)P inhibitors. Finally, in vivo analyses of a pik1 mutant strain showed that inhibition of PI(4)P synthesis blocked anterograde transport from the ER to early Golgi compartments. Together, the data presented here indicate that PI(4)P is required for the SNARE-dependent fusion stage of COPII vesicles with the Golgi complex.  相似文献   

16.
Membrane tethering and fusion in the secretory and endocytic pathways   总被引:8,自引:2,他引:6  
Studies of intracellular trafficking over the past decade or so have led to striking advances in our understanding of the molecular processes by which transport intermediates dock and fuse. SNARE proteins play a central role, assembling into complexes that bridge membranes and may catalyze membrane fusion directly. In general, different SNARE proteins operate in different intracellular trafficking pathways, so recent reports that SNARE assembly in vitro is promiscuous have come as something of a surprise. We propose a model in which proper SNARE assembly is under kinetic control, orchestrated by members of the Sec1 protein family, small GTP-binding Rab proteins, and a diverse assortment of tethering proteins.  相似文献   

17.
Post-Golgi transport of peptide hormone-containing vesicles from the site of genesis at the trans-Golgi network to the release site at the plasma membrane is essential for activity-dependent hormone secretion to mediate various endocrinological functions. It is known that these vesicles are transported on microtubules to the proximity of the release site, and they are then loaded onto an actin/myosin system for distal transport through the actin cortex to just below the plasma membrane. The vesicles are then tethered to the plasma membrane, and a subpopulation of them are docked and primed to become the readily releasable pool. Cytoplasmic tails of vesicular transmembrane proteins, as well as many cytosolic proteins including adaptor proteins, motor proteins, and guanosine triphosphatases, are involved in vesicle budding, the anchoring of the vesicles, and the facilitation of movement along the transport systems. In addition, a set of cytosolic proteins is also necessary for tethering/docking of the vesicles to the plasma membrane. Many of these proteins have been identified from different types of (neuro)endocrine cells. Here, we summarize the proteins known to be involved in the mechanisms of sorting various cargo proteins into regulated secretory pathway hormone-containing vesicles, movement of these vesicles along microtubules and actin filaments, and their eventual tethering/docking to the plasma membrane for hormone secretion.  相似文献   

18.
Biochemical data have shown that COPI-coated vesicles are tethered to Golgi membranes by a complex of at least three proteins: p115, giantin, and GM130. p115 binds to giantin on the vesicles and to GM130 on the membrane. We now examine the function of this tethering complex in vivo. Microinjection of an N-terminal peptide of GM130 or overexpression of GM130 lacking this N-terminal peptide inhibits the binding of p115 to Golgi membranes. Electron microscopic analysis of single microinjected cells shows that the number of COP-sized transport vesicles in the Golgi region increases substantially, suggesting that transport vesicles continue to bud but are less able to fuse. This was corroborated by quantitative immunofluorescence analysis, which showed that the intracellular transport of the VSV-G protein was significantly inhibited. Together, these data suggest that this tethering complex increases the efficiency with which transport vesicles fuse with their target membrane. They also provide support for a model of mitotic Golgi fragmentation in which the tethering complex is disrupted by mitotic phosphorylation of GM130.  相似文献   

19.
Antero- and retrograde cargo transport through the Golgi requires a series of membrane fusion events. Fusion occurs at the cis- and trans-side and along the rims of the Golgi stack. Four functional SNARE complexes have been identified mediating lipid bilayer merger in the Golgi. Their function is tightly controlled by a series of reactions involving vesicle tethering and SM proteins. This network of protein interactions spatially and temporally determines the specificity of transport vesicle targeting and fusion within the Golgi.At steady state, the Golgi maintains its structural and functional organization despite a massive lipid and protein flow. A balanced anterograde and retrograde membrane flow are required to constantly recycle the transport machinery and cargo containers (vesicles). In the absence of efficient recycling, directional net cargo transport would cease and the Golgi would collapse. Thus, transport vesicles constantly leave and enter at both sides of the Golgi stack and bud and fuse along the rims of the cisternae. To maintain the compartmental identity, vesicle fusion occurs in a specific and orchestrated manner. These fusion events are mediated by a cascade of reactions centered around the membrane fusion proteins SNAREs (SNAP receptors) (Söllner et al. 1993b).  相似文献   

20.
Pairing of SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor) proteins on vesicles (v-SNAREs) and SNARE proteins on target membranes (t-SNAREs) mediates intracellular membrane fusion. VAMP3/cellubrevin is a v-SNARE that resides in recycling endosomes and endosome-derived transport vesicles. VAMP3 has been implicated in recycling of transferrin receptors, secretion of alpha-granules in platelets, and membrane trafficking during cell migration. Using a cell fusion assay, we examined membrane fusion capacity of the ternary complexes formed by VAMP3 and plasma membrane t-SNAREs syntaxin1, syntaxin4, SNAP-23 and SNAP-25. VAMP3 forms fusogenic pairing with t-SNARE complexes syntaxin1/SNAP-25, syntaxin1/SNAP-23 and syntaxin4/SNAP-25, but not with syntaxin4/SNAP-23. Deletion of the N-terminal domain of syntaxin4 enhanced membrane fusion more than two fold, indicating that the N-terminal domain negatively regulates membrane fusion. Differential membrane fusion capacities of the ternary v-/t-SNARE complexes suggest that transport vesicles containing VAMP3 have distinct membrane fusion kinetics with domains of the plasma membrane that present different t-SNARE proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号