首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Regulation of Btk by Src family tyrosine kinases.   总被引:5,自引:1,他引:4       下载免费PDF全文
Loss of function of Bruton's tyrosine kinase (Btk) results in X-linked immunodeficiencies characterized by a broad spectrum of signaling defects, including those dependent on Src family kinase-linked cell surface receptors. A gain-of-function mutant, Btk*, induces the growth of fibroblasts in soft agar and relieves the interleukin-5 dependence of a pre-B-cell line. To genetically define Btk signaling pathways, we used a strategy to either activate or inactivate Src family kinases in fibroblasts that express Btk*. The transformation potential of Btk* was dramatically increased by coexpression with a partly activated c-Src mutant (E-378 --> G). This synergy was further potentiated by deletion of the Btk Src homology 3 domain. Downregulation of Src family kinases by the C-terminal Src kinase (Csk) suppressed Btk* activation and biological potency. In contrast, kinase-inactive Csk (K-222 --> R), which functioned as a dominant negative molecule, synergized with Btk* in biological transformation. Activation of Btk* correlated with increased phosphotyrosine on transphosphorylation and autophosphorylation sites. These findings suggest that the Src and Btk kinase families form specific signaling units in tissues in which both are expressed.  相似文献   

3.
Bruton's tyrosine kinase (Btk) is tyrosine phosphorylated and enzymatically activated following ligation of the B-cell antigen receptor. These events are temporally regulated, and Btk activation follows that of various members of the Src family of protein tyrosine kinases, thus raising the possibility that Src kinases participate in the Btk activation process. We have evaluated the mechanism underlying Btk enzyme activation and have explored the potential regulatory relationship between Btk and Src protein kinases. We demonstrate in COS transient-expression assays that Btk can be activated through intramolecular autophosphorylation at tyrosine 551 and that Btk autophosphorylation is required for Btk catalytic functions. Coexpression of Btk with members of the Src family of protein tyrosine kinases, but not Syk, led to Btk tyrosine phosphorylation and activation. Using a series of point mutations in Blk (a representative Src protein kinase) and Btk, we show that Src kinases activate Btk through an indirect mechanism that requires membrane association of the Src enzymes as well as functional Btk SH3 and SH2 domains. Our results are compatible with the idea that Src protein tyrosine kinases contribute to Btk activation by indirectly stimulating Btk intramolecular autophosphorylation.  相似文献   

4.
The Src-family tyrosine kinases (SFKs) are oncogenic enzymes that contribute to the initiation and progression of many types of cancer. In normal cells, SFKs are kept in an inactive state mainly by phosphorylation of a consensus regulatory tyrosine near the C-terminus (Tyr530 in the SFK c-Src). As recent data indicate that tyrosine modification enhances binding of metal ions, the hypothesis that SFKs might be regulated by metal ions was investigated. The c-Src C-terminal peptide bound two Fe3 + ions with affinities at pH 4.0 of 33 and 252 μM, and phosphorylation increased the affinities at least 10-fold to 1.4 and 23 μM, as measured by absorbance spectroscopy. The corresponding phosphorylated peptide from the SFK Lyn bound two Fe3 + ions with much higher affinities (1.2 pM and 160 nM) than the Src C-terminal peptide. Furthermore, when Lyn or Hck kinases, which had been stabilised in the inactive state by phosphorylation of the C-terminal regulatory tyrosine, were incubated with Fe3 + ions, a significant enhancement of kinase activity was observed. In contrast Lyn or Hck kinases in the unphosphorylated active state were significantly inhibited by Fe3 + ions. These results suggest that Fe3 + ions can regulate SFK activity by binding to the phosphorylated C-terminal regulatory tyrosine.  相似文献   

5.
A series of isothiazolopyrimidines and isoxazolopyrimidines were synthesized and identified as potent KDR inhibitors. SAR studies led to isothiazolopyrimidine urea analogs that potently inhibit VEGFR tyrosine kinases (KDR enzymatic and cellular IC(50) values below 10 nM) as well as cKIT and TIE2. The selected compounds 8 and 13 display 56% and 48% oral bioavailability in mice, respectively.  相似文献   

6.
Several synthetic random polymers of tyrosine containing glutamic acid, alanine, and lysine in various proportion served as substrates for tyrosine-specific protein kinases. The Km values for these substrates were much lower than for small polypeptides such as angiotensin. For the protein kinase coded by Fujinami virus, the best substrates (with the lowest Km) were polymers containing glutamic acid, alanine, and 8 to 10% tyrosine; for the insulin receptor protein kinase, the best substrate was a polymer containing 80% glutamic acid and 20% tyrosine. These polymers serve as inexpensive and tyrosine-specific substrates that can be used even with crude extracts and analyzed by the convenient filter paper assay. Several synthetic polymers with ordered sequences were found to be potent inhibitors of these tyrosine-specific protein kinases.  相似文献   

7.
Regulation and assembly of the epithelial cell junctional complex involve multiple signaling mechanisms, including heterotrimeric G proteins. Recently, we demonstrated that G12 binds to the tight junction scaffolding protein ZO-1 through the SH3 domain and that activated G12 increases paracellular permeability in Madin-Darby canine kidney (MDCK) cells (Meyer et al. J Biol Chem 277: 24855-24858, 2002). In the present studies, we explore the effects of G12 expression on tight and adherens junction proteins and examine downstream signaling pathways. By confocal microscopy, we detect disrupted tight and adherens junction proteins with increased actin stress fibers in constitutively active G12 (QL12)-expressing MDCK cells. The normal distribution of ZO-1 and Na-K-ATPase was altered in QL12-expressing MDCK cells, consistent with loss of polarity. We found that the tyrosine kinase inhibitor genistein and the Src-specific inhibitor PP-2 reversibly abrogated the QL12 phenotype on the junctional complex. Junctional protein localization was preserved in PP-2- or genistein-treated QL12-expressing cells, and the increase in paracellular permeability as measured by transepithelial resistance and [3H]mannitol flux was prevented by the inhibitors. Src activity was increased in QL12-expressing MDCK cells as assessed by Src autophosphorylation, and -catenin tyrosine phosphorylation was also increased, although there was no detectable increase in Rho activity. Taken together, these results indicate that G12 regulates MDCK cell junctions, in part through Src tyrosine kinase pathways. G proteins; tight junction; adherens junction; Rho  相似文献   

8.
Cellular adhesion molecules such as E-selectin function to recruit leukocytes into the inflammatory lesions of diseases such as rheumatoid arthritis (RA) and atherosclerosis. Monocytes are the key components of the cellular infiltrates present in these disorders. We hypothesized that soluble E-selectin (sE-selectin) might mediate the chemotaxis of monocytes. In this report, we show that sE-selectin induced normal human peripheral blood monocyte migration in the nanomolar range in a concentration-dependent manner. Neutralization studies using RA human joint synovial fluids and anti-E-selectin antibody showed a mean 31% reduction in RA synovial fluid-mediated monocyte chemotaxis (p < 0.05), indicating that sE-selectin is a major monocyte recruiter in RA. Next, we investigated the role of tyrosine phosphorylation pathways in sE-selectin-induced monocyte chemotaxis. Human peripheral blood monocytes stimulated with sE-selectin showed a time-dependent increase in the tyrosine phosphorylation of a broad range of cellular proteins, predominantly in the molecular size range of Src family kinases (50-60 kDa) and mitogen-activated protein kinases (MAPKs). Western blot analysis of Src family kinases showed a time-dependent increase in Src, Hck, and Lyn phosphorylation. The pretreatment of monocytes with the Src inhibitor AG1879: 4-amino-5-(4-chlorophenyl)-7-(t-butyl)pyrazolol[3,4-d]pyrimidine (PP2) prior to stimulation with sE-selectin markedly inhibited Hck and Lyn phosphorylation, whereas the phosphorylation of Src was partially inhibited. In addition, the sE-selectin stimulation of monocytes resulted in the increased phosphorylation of extracellular signal-related kinase (ERK1/2) and p38 MAPK. The pretreatment of monocytes with PP2 showed 89 and 83% inhibition of ERK1/2 and p38 MAPK phosphorylation, respectively. sE-selectin also showed a time-dependent activation of Ras kinase. Furthermore, the pretreatment of monocytes with PP2 completely inhibited sE-selectin-mediated monocyte chemotaxis. Taken together, our data demonstrate a novel function for sE-selectin as a monocyte chemotactic agent and suggest that sE-selectin might be mediating its biological functions through the Src-MAPK pathway.  相似文献   

9.
Csk and Src are two protein tyrosine kinases with similar amino acid sequences but very different structures and functions. Csk catalyzes a tail phosphorylation reaction on Src and thereby restrains Src's activity and oncogenic potential. Comparative analysis of the domain interactions in these enzymes provides a lesson in signalling diversity and mechanisms of enzyme regulation. The molecular basis of the specificity of Csk targeting the Src tail appears to involve both local and long-range interactions and illustrates the complexity of selective targeting in post-translational modification.  相似文献   

10.
There is increasing evidence to suggest that cytoplasmic tyrosine kinases of the Src family have a pivotal role in the regulation of a number of cellular processes. Members of this family have been implicated in cellular responses to a variety of extracellular signals, such as those arising from growth factors and cell-cell interactions, as well as in differentiative and developmental processes in both vertebrates and invertebrates. A better understanding of the regulation and of the structure-function relationships of these enzymes might aid in the development of specific ways to interfere with their action, as well as serving as a paradigm for regulation of other protein tyrosine kinases that have SH2 and SH3 domains. In this review we will first discuss the regulation of Src family protein tyrosine kinases, with particular emphasis on their SH2 and SH3 domains. We will then briefly review other non-receptor protein tyrosine kinases that have SH2 and SH3 domains.  相似文献   

11.
12.
Banavali NK  Roux B 《Proteins》2009,74(2):378-389
Regulated activity of Src kinases is critical for cell growth. Src kinases can be activated by trans-phosphorylation of a tyrosine located in the central activation loop of the catalytic domain. However, because the required exposure of this tyrosine is not observed in the down-regulated X-ray structures of Src kinases, transient partial opening of the activation loop appears to be necessary for such processes. Umbrella sampling molecular dynamics simulations are used to characterize the free energy landscape of opening of the hydrophilic part of the activation loop in the Src kinase Hck. The loop prefers a partially open conformation where Tyr416 has increased accessibility, but remains partly shielded. An asymmetric distribution of the charged residues in the sequence near Tyr416, which contributes to shielding, is found to be conserved in Src family members. A conformational equilibrium involving exchange of electrostatic interactions between the conserved residues Glu310 and Arg385 or Arg409 affects activation loop opening. A mechanism for access of unphosphorylated Tyr416 into an external catalytic site is suggested based on these observations.  相似文献   

13.
Although Src protein tyrosine kinases (PTKs) have been shown to be essential in late preconditioning (PC) against myocardial stunning, their role in triggering versus mediating late PC against myocardial infarction remains unclear. Four groups of conscious rabbits were subjected to a 30-min coronary occlusion on day 2, with or without PC ischemia on day 1. Administration of the Src PTK inhibitor lavendustin A (LD-A; 1 mg/kg iv) before the PC ischemia on day 1 (group III, n = 7) failed to block the delayed protective effect against myocardial infarction 24 h later. Late PC against infarction, however, was completely abrogated when LD-A was given 24 h after the PC ischemia, prior to the 30-min occlusion on day 2 (group IV, n = 8). We conclude that, in conscious rabbits, Src PTK activity is necessary for the mediation of late PC protection against myocardial infarction on day 2, but not for the initiation of this phenomenon on day 1. Taken together with previous studies in the setting of stunning, these findings reveal heretofore unrecognized differences in the roles of Src PTKs in late PC against stunning versus late PC against infarction.  相似文献   

14.
The Src family of tyrosine protein kinases represent an expanding class of closely related intracellular enzymes that participate in the signal transduction pathways of a variety of surface receptors. One of the more surprising aspects of the information relating Src protein kinases to receptor signaling is the apparent diversity of receptor types with which the Src-related enzymes are reported to interact physically or functionally. Traditional biochemical and genetic approaches have yielded much information regarding the interactions between the Src tyrosine protein kinases and other cellular proteins in defined cell types, and emerging technologies, most notably homologous recombination in embryonal stem cells to achieve gene "knockouts," are providing new insights into the participation of the Src-related gene products in signal transduction and development.  相似文献   

15.
Protein tyrosine kinases play key roles in many molecular and cellular processes in diverse living organisms. Their proper functioning is crucial for the normal growth, development, and health in humans, whereas their dysfunction can cause serious diseases, including various cancers. As such, intense studies have been performed to understand the molecular mechanisms by which the activities of protein tyrosine kinases are regulated in mammalian cells. Particularly, small molecules that can modulate the activity of tyrosine kinases are of great importance for discovering therapeutic drug candidates for numerous diseases. Notably, heme cannot only serve as a prosthetic group for hemoglobins and enzymes, but it also is a small signaling molecule that can control the activity of diverse signaling and regulatory proteins. Using a computational search, we found that a group of non-membrane spanning tyrosine kinases contains one or more CP motifs that can potentially bind to heme and mediate heme regulation. We then used experimental approaches to determine whether heme can affect the activity of any of these tyrosine kinases. We found that heme indeed affects the phosphorylation of key tyrosine residues in Jak2 and Src, and is therefore able to modulate Jak2 and Src activity. Further experiments showed that Jak2 and Src bind to heme and that the presence of heme alters the sensitivity of Jak2 and Src to trypsin digestion. These results suggest that heme actively interacts with Jak2 and Src and alters their conformation.  相似文献   

16.
We designed and synthesized a novel 1,4-benzoxazin-3-one derivative 4 which would have inhibitory activities against tyrosine kinases. They could be synthesized easily from various carboxylic acids 10 and commercially available amines using TFP resin without purification. In this article, we will report the design and synthesis of a novel 1,4-benzoxazin-3-one chemical library 4 and the inhibitory activities against KDR and ABL which are closely related to chronic diseases such as cancer.  相似文献   

17.
Novel N9-arenethenyl purines, optimized potent dual Src/Abl tyrosine kinase inhibitors, are described. The key structural feature is a trans vinyl linkage at N9 on the purine core which projects hydrophobic substituents into the selectivity pocket at the rear of the ATP site. Their synthesis was achieved through a Horner–Wadsworth–Emmons reaction of N9-phosphorylmethylpurines and substituted benzaldehydes or Heck reactions between 9-vinyl purines and aryl halides. Most compounds are potent inhibitors of both Src and Abl kinase, and several possess good oral bioavailability.  相似文献   

18.
We have studied the role of src family tyrosine kinases in regulating synaptic transmitter release from rat brain synaptosomes by using two assays that measure different aspects of synaptic vesicle exocytosis: glutamate release (that directly measures exocytosis of vesicle contents) and release of FM 2-10 styryl dye (that is proportional to the time the synaptic vesicle is fused to the plasma membrane). Depolarisation was induced by KCl (30 mM) or 4-aminopyridine (4AP: 0.3mM) to induce release by full fusion (FF) exocytosis, or by 1 mM 4AP to induce release by both FF and kiss-and-run (KR)-like exocytosis. The src family selective inhibitor, PP1 (10 microM), increased KCl and 0.3 mM 4AP-evoked Ca2+ -dependent release of glutamate, but had little effect upon exocytosis evoked by 1mM 4AP. PP1 did not affect the release of FM 2-10 under any of the depolarisation conditions used. PP1 also had no effect on overall intracellular calcium levels, as measured by FURA2, suggesting that the effects of the inhibitor are downstream of calcium entry. At the same concentration the inactive analogue of this compound, PP3, had no effect on any measure. Immunoblotting with an antibody to phosphotyrosine revealed that phosphorylation of many synaptosomal proteins was reduced by PP1. The immunoreactivity of three protein bands increased upon depolarisation and this increase was blocked by PP1. Phosphorylation of src at tyrosine-416 was reduced by PP1 but changes in its phosphorylation did not correlate with the effects of PP1 on release. These results suggest one or more members of the src family of tyrosine kinases is a negative regulator of the KR mode of exocytosis in synaptosomes, perhaps by tonically inhibiting KR under normal stimulation conditions.  相似文献   

19.
Protein tyrosine kinases (TKs) regulate cell proliferation, cell differentiation, and play a fundamental role in signal transduction pathway. Uncontrolled signaling from receptor tyrosine kinases and intracellular tyrosine kinases was related to diseases such as cancer, atherosclerosis and psoriasis. For the present study, we selected a number of structurally related ATP-binding site inhibitors of EGF-receptors of diverse classes. Molecular properties of competitive inhibitors are key features for the action mechanism of these compounds. We performed a theoretical study at the RHF/6-311G* level of theory, in order to correlate the molecular parameters with the biological inhibitory activities. Species stability as evaluated by ionization potentials as well as the E(HOMO)-E(LUMO) energy gap, is in very good correlation with higher inhibitory potency (IP). The most active species, 1, 5, 6,10,11 and 12 exhibited strongly negative charged atoms over the C6 and C7 positions, the higher IP, higher mu and higher energy gap. In summary, a good correlation was observed between the molecular parameters, such as ionization potential, dipolar moment and E(HOMO)-E(LUMO) energy gap and inhibitory potency, suggesting that these properties play an important role for the interaction at the ATP-binding site of EGF-receptors.  相似文献   

20.
The Na+, K+-ATPase or Na+, K+-pump plays a critical role in ion homeostasis and many cellular events. The Na+, K+-pump activity is regulated by serine/threonine phosphorylation, the role of tyrosine kinases in the regulation, however, is obscure. We now present novel evidence showing that tyrosine phosphorylation activates the Na+, K+-pump in cortical neurons. The electrogenic activity of the Na+, K+-pump was measured using whole-cell voltage clamp. A tonic activity was revealed by an inward current induced by the specific inhibitor ouabain or strophanthidin; an outward current due to activation of the pump was triggered by raising extracellular K+. The inward and outward currents were attenuated by the tyrosine kinase inhibitor genistein, herbimycin A, or lavendustin A, while blocking tyrosine phosphatases increased the pump current. Down-regulation of the pump current was also seen with the Src inhibitor PP1 and intracellularly applied anti-Lyn or anti-Yes antibody. Consistently, intracellular application of Lyn kinase up-regulated the pump current. Immunoprecipitation and western blotting showed tyrosine phosphorylation and a direct interaction between Lyn and the alpha3 subunit of the Na+, K+-pump. The tyrosine phosphorylation of the alpha3 subunit was reduced by serum deprivation. These data suggest that the Na+, K+-ATPase activity in central neurons is regulated by specific Src tyrosine kinases via a protein-protein mechanism and may play a role in apoptosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号