首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Internalization of cationized ferritin by isolated pancreatic acinar cells   总被引:2,自引:0,他引:2  
The internalization of cationized ferritin (CF) was studied in isolated pancreatic acinar cells in vitro. Horseradish peroxidase (HRP) was used in conjunction with CF to compare internalization of soluble-phase and membrane-bound tracers. The mode of internalization of CF was dependent upon tracer concentration and origin of the plasma membrane (apical vs. lateral-basal). At the lower tracer concentrations (0.19 and 0.38 mg/ml), internalization from the apical cell surface occurred via small vesicles. The tracer then appeared in multivesicular bodies, in tubules, and in irregular membrane-bound structures. After 15 min, CF particles were seen in many small vesicles near the Golgi apparatus, but not in the Golgi saccules. In contrast, at the lateral-basal cell surface the CF particles tended to form clusters. These clusters were more pronounced at higher CF concentrations (0.76 and 1.5 mg/ml) and were associated with elongated cellular processes, which seemed to engulf CF accumulations in a phagocytic manner. Once internalized, CF was found primarily in large irregular structures which appeared to migrate slowly toward the nucleus, reaching a juxtanuclear position after approximately 30 min. CF was observed in lysosomes after 30-45 min and by 90 min most of the CF was confined to large vacuoles and to trimetaphosphatase-positive lysosomes. Similar routes were observed when cells were double-labeled with CF and HRP, where endocytic structures showed co-localization of both tracers. The results of this study indicate the importance of the Golgi region in the intracellular sorting of internalized apical membrane. Furthermore, this work confirms the presence of distinct endocytic pathways at the apical and lateral-basal cell surfaces.  相似文献   

2.
Zymographic analyses were carried out on a commercial peroxidasepreparation of horseradish (Cochlearia armorada) and crude extractsfrom several plant materials, such as roots of turnip, radish,spinach, sweet potato and morning glory, regarding the dualcatalytic activities of peroxidase- IA oxidase isozymes. A standardreacting mixture for the oxidase stain contained IA, TCP andFast Blue BB salt as substrate, promoting agent and dye coupler,respectively. An unidentified intermediate (or intermediates)resulting from enzymatic IA degradation was demonstrated tobe coupled with the diazonium salt and to form an insolublecomplex. At least four cathodal and four anodal peroxidase bandswere located in the horseradish preparation, the former appearingas dark IA oxidase bands and the latter as very faint bands. In the extracts from plant materials, less than half of thetotal peroxidase bands appeared as heavy to faint IA oxidasebands, whereas the remaining ones did not appear in the samecondition as that for the horseradish IA oxidase stain. Furthermore,it was noted that the intensity of each of the peroxidase bandswas not always correlated with that of the corresponding oxidasebands. 1Contribution No. 683 from the National Institute of Genetics,Misima.  相似文献   

3.
The formation and fate of apical endocytic vesicles in resting and isoproterenol-stimulated rat parotid acinar cells were studied using luminally administered horseradish peroxidase (HRP) to mark the vesicles. The tracer was taken up from the lumen by endocytosis in small, smooth-surfaces "c"- or ring-shaped vesicles. About 1 h after HRP administration the vesicles could be found adjacent to the Golgi apparatus. At later times HRP reaction product was localized in multivesicular bodies and lysosomes; in isoproterenol-stimulated cells it was also present in autophagic vacuoles. HRP reaction product was never localized in any structure associated with secretory granule formation. These results suggest that the apical endocytic vesicles play a role in membrane recovery, but that they are degraded and not reutilized directly in secretory granule formation. Additionally, it was found that when isoproterenol was injected before HRP administration, the apical junctional complexes became permeable to the tracer, allowing it to gain access to the lateral and basal intercellular spaces. This permeability may provide an additional route whereby substances in the extracellular fluid could reach the saliva.  相似文献   

4.
Despite a recent breakthrough in human islet transplantation for treating diabetes mellitus, the limited availability of insulin-producing tissue is still a major obstacle. Here, we studied whether adult pancreatic acinar cells have the potential to transdifferentiate into islet or beta cells. Pancreatic acini were isolated from 7- to 8-weeks-old male Sprague-Dawley rats and cultured in suspension. Within 1 week, most of the acinar cells lost amylase expression and converted to cells with a duct cell phenotype. Insulin-positive cells were also observed, mainly at the periphery of the acini-derived spheroids. Insulin gene and protein expression was increased. Presence of a few insulin-positive cells coexpressing cytokeratins suggests that a spontaneous acinar to ductal cell transdifferentiation process was further going on towards beta cells. This study provides the first evidence that adult pancreatic acinar cells could be differentiated into insulin-expressing cells in vitro.  相似文献   

5.
Isozymes of horseradish peroxidase may be generated from preexisting forms of the enzyme by incubation at 4 °C in solutions with pH's of 7 or higher. Isozymes generated in this manner express an apparent net increase in negative charge compared to the original form of the enzymes. This is evidenced by an increase in anodic electrophoretic mobility and a decrease in isoelectric point. The generation of new isozymes of peroxidase by such treatment alters the isozyme distribution pattern considerably, but there is no net change in total peroxidase activity present in the extract if pH's of 10.0 or lower are used. The generated peroxidase isozymes are formed irreversibly; neither retitration of extracts to a lower pH nor heat treatment will restore the original peroxidase isozymes.  相似文献   

6.
Surface directed pancreatic acinar cell antibodies raised by immunization of rabbits with suspensions of viable isolated rat acinar cells were utilized to study immune cytolytic processes as a model of in vitro pancreatic injury. The antibodies produced were bound to rat pancreatic acinar cell surface determinants and significantly damaged freshly separated acinar cells by immune cytolytic mechanisms. Addition of complement accelerated the cytolytic effects on the target cells in a dose-dependent manner. The decline of acinar cells was dependent only on the presence of the immune cytolytic potential and not on the number of already damaged cells. Morphologic changes in the cells induced by the agents applied were revealed by both transmission and scanning electron microscopy. The presented experimental model seems a valuable tool for further investigations at the cellular level into the contribution of primarily occurring acinar cell injury in triggering the subsequent pathophysiological mechanisms initiating autodigestion of the pancreatic gland in the pathogenesis of acute pancreatitis. Dedicated to Professor P. Heinrich on the occasion of his 60th birthday  相似文献   

7.
Surface directed pancreatic acinar cell antibodies raised by immunization of rabbits with suspensions of viable isolated rat acinar cells were utilized to study immune cytolytic processes as a model of in vitro pancreatic injury. The antibodies produced were bound to rat pancreatic acinar cell surface determinants and significantly damaged freshly separated acinar cells by immune cytolytic mechanisms. Addition of complement accelerated the cytolytic effects on the target cells in a dose-dependent manner. The decline of acinar cells was dependent only on the presence of the immune cytolytic potential and not on the number of already damaged cells. Morphologic changes in the cells induced by the agents applied were revealed by both transmission and scanning electron microscopy. The presented experimental model seems a valuable tool for further investigations at the cellular level into the contribution of primarily occurring acinar cell injury in triggering the subsequent pathophysiological mechanisms initiating autodigestion of the pancreatic gland in the pathogenesis of acute pancreatitis.  相似文献   

8.
The effect of two different types of secretagogues on rat pancreatic acinar cells cultured onto a reconstituted basement membrane was studied. Cells cultured without any secretagogue were able to reaggregate but did not form monolayer patches. Most of them lost their differentiated ultrastructural characteristics but regained their polarity. In contrast, when CCK, caerulein, or carbamylcholine was added to the culture medium cells developed both acini-like structures and cell monolayer patches. The cells retained the differentiated ultrastructural appearance and polarity resembling their in situ morphology. Furthermore, secretagogue-conditioned cells presented higher amylase contents. The use of secretagogue antagonists such as L-364,718 and L-365,260 for caerulein, or atropine and mecamylamine for carbamylcholine, did not profoundly modify the cultures and the morphological effects triggered by the secretagogues alone. However, both CCK antagonists and cholinergic antagonists inhibited to a certain degree the secretory stimulation. Our data support the theory that a major role is played by secretagogues in conjunction with the basement membrane for the maintenance of differentiation in pancreatic acinar cells in vitro which appears to be independent from their secretory effect.  相似文献   

9.
10.
Reversible pinocytosis of horseradish peroxidase in lymphoid cells   总被引:3,自引:0,他引:3  
A detailed study of fluid phase endocytosis of horseradish peroxidase (HRP) in rat lymph node cells (LNC) is presented in this paper. Preliminary experiments have shown that HRP was internalized by non-receptor-mediated endocytosis and interacted minimally or not at all with plasma membrane of LNC, and can then be considered as a true fluid phase marker for these cells. Kinetics of uptake of HRP was found not to be linear with incubation time at 37 degrees C and deviation from linearity can be attributed to constant exocytosis of HRP. The kinetics of exocytosis cannot be described by a single exponential process. Rather, a minimum of two exponentials is required to account for exocytosis. This suggests that at least two intracellular compartments are involved in this process. The first turns over very rapidly with a t 1/2 release of about 3 min and is saturated after 10 min of exposure with HRP. The second, which turns over very slowly, is characterized by a t 1/2 release of about 500 min and accounts for the intracellular accumulation of HRP. Similar biphasic kinetics of exocytosis were observed with unfractionated LNC, with T lymphocyte-enriched LNC and with lymphocytes purified according to their density. This suggests that most, if not all, LNC are able to release HRP and that each cell type is endowed with the two intracellular compartments. Kinetics of uptake of HRP in these two compartments indicated that they are probably filled by two endocytic pathways, at least partially independent. Taken together, these results seem to indicate that a rapid membrane recycling occurs in lymphocytes. Furthermore, the weak base ammonium chloride and the carboxylic ionophore monensin were shown in our study to inhibit fluid phase endocytosis of HRP. The inhibition was time-dependent and required a preincubation of the cells with the drugs to be observed. Our results suggest that a perturbation of the vesicular traffic or a sequestration of membranes involved in HRP uptake is induced by these drugs. Under these conditions the release of cell-associated HRP was also reduced and to the same extent as the inhibition of uptake. Distribution of HRP between the two compartments and the t 1/2 release of HRP from either compartment were not perturbed. Taken together these results seem to indicate that exocytosis is not specifically affected by these drugs. Inhibition of uptake in drug-treated cells could result from a general decrease of membrane recycling or to the formation of smaller pinocytic vesicles with a different surface to volume ratio.  相似文献   

11.
Hydrazide horseradish peroxidase, (hydHRP), a hydrazide derivative of the common cytochemical tracer HRP, was covalently coupled to the surface of periodate-treated Chinese hamster ovary (CHO) cells and used to study the distribution and internalization of plasma membrane glycoconjugates. The Schiff-base coupling of hydHRP to the cell surface at 4 degrees C had little effect on cell viability. After coupling, cells were washed at 4 degrees C and the subcellular distribution of hydHRP was determined immediately or after incubation at 37 degrees C. Within 1 hr, hydHRP was observed to cap over pseudopodal-like extensions and then accumulate over a 2.5 h period in a punctate to perinuclear staining pattern over the cell body. By electron microscopy, the pseudopodal-like regions were found to be areas of extensive cell surface invaginations, rich in microfilaments. HydHRP internalized over a 2.5 to 18 hr period was observed in smooth vesicles resembling pinosomes/endosomes, multivesicular bodies (lysosomes), and small perinuclear vesicles. Little, if any, hydHRP activity was detected in association with elements of Golgi apparatus. By cell fractionation in 10% Percoll gradients, hydHRP was found to have accumulated in prelysosomal endocytic vesicles and lysosomes. For cells that were first surface labeled with 125I at 4 degrees C and then conjugated with hydHRP, little, if any, cotransport of the 125I label with hydHRP was observed. Over the entire capping and internalization period, most hydHRP activity remained membrane associated. Overall, these results indicate that the dominant intracellular transport route for a covalent membrane probe, hydHRP glycoconjugate, is similar if not identical to that previously reported for the solute probe native HRP (16) in CHO cells. HydHRP internalization provides further evidence for the independent sorting of proteins in endocytic transport.  相似文献   

12.
13.
Summary Chronic reserpine treatment of animals, an experimental model for cystic fibrosis (CF), results in generalized exocrinopathy, impaired pancreatic secretion, and decreased pancreatic content of amylase. The mechanisms of altered acinar function and decreased amylase content in both CF and the reserpine-treated rat are unknown. To examine this alteration, the rate of [3H]phenylalanine (phe) incorporation into cellular protein was determined in pancreatic acinar cells after reserpine treatment of rats in vivo (7 d) and of cells in vitro (1 to 24 h). Acinar cells isolated from control, chronic reserpine-treated, and pair-fed rats were incubated in vitro with 0, 30, 50, or 100 μM reserpine. Reserpine treatment in vitro for 24 h of acinar cells from control rats significantly decreased amylase activity (20 to 70%), an effect similar to that of reserpine treatment in vivo. In vivo, reserpine treatment decreased [3H]phe incorporation (disintegrations per minute per milligram protein) 56% in freshly isolated cells, but did not alter intracellular specific activity (disintegrations per minute per nanomole phe, SA) of [3H]phe. Reserpine treatment (30 and 50 μM) in vitro for 1 h also decreased [3H]phe incorporation by freshly isolated cells from control (53 to 85%) and pair-fed (40 to 68%) rats. Reserpine treatment for 24 h in vitro significantly decreased [3H]phe incorporation by cells from control (82 and 98%), pair-fed (80 and 95%), and chronic reserpine-treated (90 and 97%) rats as compared with cells from respective in vivo treatments cultured with no reserpine. In vitro reserpine treatment also decreased the intracellular SA of [3H]phe in freshly isolated cells from control (14 and 36%) and pair-fed (35 and 39%) rats and in cultured cells from control (11 and 86%), pair-fed (60 and 88%), and chronic reserpine-treated (49 and 76%) rats. However, these alterations of SA by reserpine did not account for the decreased incorporation of [3H]phe into acinar protein, which remained significantly lower (70 to 88%) when expressed as total phe incorporation. These results suggest (a) that reserpine acts directly on acinar cells to alter function and (b) that the ability of the pancreas to synthesize digestive enzymes may be impaired in this model of cystic fibrosis. This study was supported in part by the Cystic Fibrosis Foundation, Bethesda, MD.  相似文献   

14.
Summary To investigate the mechanisms whereby bone cells absorb organic bone-matrix components during endochondral bone development, rat humeri were examined, employing horseradish peroxidase as a soluble protein tracer.Intravenously-injected peroxidase filled the osteoid layer and penetrated into the osteocyte lacunae and canaliculi, but did not enter the mineralized bone matrix. Whereas osteocytes rarely took up exogenous peroxidase, osteoblasts and osteoclasts actively endocytosed peroxidase in pinocytotic coated vesicles, tubular structures, and vacuoles. They also formed endocytotic vacuoles containing peroxidase in the Golgi area. The Golgi apparatus and dense bodies of these bone cells were, however, free of reaction products. Osteoclast ruffled borders were responsible for peroxidase absorption. In the osteoblast, osteocyte and osteoclast, endogenous peroxidatic reaction was detected only in mitochondria and not in other membrane-bounded vesicles and bodies. These results strongly suggest that both osteoblasts and osteoclasts participate in the resorption of bone-matrix organic components during bone remodelling.  相似文献   

15.
In order to establish the distribution with time of proteins microinjected into mammalian cells, horseradish peroxidase (HRP) was microinjected into baby hamster kidney (BHK) cells using chicken erythrocyte ghosts. At time intervals following initiation of fusion between ghosts and target cells, samples were fixed with aldehydes and the peroxidase visualized by reaction with diaminobenzidine and viewing by light and electron microscopy. At 10 min, the reaction product was observed within the cytoplasm of 60% of the microinjected cells, but was excluded from the nucleus and membranous organelles. In the other 40% of microinjected cells, the reaction product was also observed within the nucleus. At 30 min, the reaction product was observed to be evenly distributed throughout the cell, including the nucleus but excluded from organelles. By 6 h, the reaction product was present almost exclusively within the nucleus of 63% of microinjected cells. At all time points, 20–30% of the erythrocytes ghosts appear to have been taken up by cells by phagocytosis rather than fusion, as evidenced by the presence of peroxidase reaction product within intact and fragmented erythrocyte ghosts in the cytoplasm of target cells. Cells incubated with a lanthanum solution following fusion excluded this electron dense tracer, indicating that the cytoplasmic compartment is not opened during exposure to polyethylene glycol.  相似文献   

16.
17.
Although the role of calcium (Ca2+) in the signal transduction and pathobiology of the exocrine pancreas is firmly established, the role of magnesium (Mg2+) remains unclear. We have characterized the intracellular distribution of Mg2+ in response to hormone stimulation in isolated mouse pancreatic acinar cells and studied the role of Mg2+ in modulating Ca2+ signaling using microspectrofluorometry and digital imaging of Ca2+- or Mg2+-sensitive fluorescent dyes as well as Mg2+-sensitive intracellular microelectrodes. Our results indicate that an increase in intracellular Mg2+ concentrations reduced the cholecystokinin (CCK) -induced Ca2+ oscillations by inhibiting the capacitive Ca2+ influx. An intracellular Ca2+ mobilization, on the other hand, was paralleled by a decrease in [Mg2+]i, which was reversible upon hormone withdrawal independent of the electrochemical gradients for Mg2+, Ca2+, Na+, and K+, and not caused by Mg2+ efflux from acinar cells. In an attempt to characterize possible Mg2+ stores that would explain the reversible, hormone-induced intracellular Mg2+ movements, we ruled out mitochondria or ATP as potential Mg2+ buffers and found that the CCK-induced [Mg2+]i decrease was initiated at the basolateral part of the acinar cells, where most of the endoplasmic reticulum (ER) is located, and progressed from there toward the apical pole of the acinar cells in an antiparallel fashion to Ca2+ waves. These experiments represent the first characterization of intracellular Mg2+ movements in the exocrine pancreas, provide evidence for possible Mg2+ stores in the ER, and indicate that the spatial and temporal distribution of intracellular Mg concentrations profoundly affects acinar cell Ca2+ signaling.  相似文献   

18.
Dopamine has been shown to effect pancreatic flow, protein output and amylase secretion in a variety of species. However, there is conflicting evidence regarding the role of dopamine on amylase release in vitro. Specific studies were conducted to evaluate the effect of dopamine and to compare its effects with other substances on basal- and secretagogue-stimulated amylase secretion in a guinea pig dispersed pancreatic acinar cells preparation. Dopamine (10(-6) M) induced a small, but significant (P less than 0.05) increase of amylase secretion. Established secretagogues (10(-6) M) including bombesin, cholecystokinin-octapeptide (CCK-8) and carbachol as anticipated induced significantly larger responses. Other substances tested (10(-6) M) including thyrotropin-releasing hormone (TRH) and muscimol were without effect. Complete dose-response studies (10(-11)-10(-3) M) in the presence of bombesin, CCK-8 and carbachol revealed that dopamine does not affect amylase release in response to these secretagogues. These findings suggest that dopamine is a weak stimulant of amylase secretion in vitro, and that it may therefore play a minor role in regulation of pancreatic enzyme secretion. Several factors including vascular, hormonal and neural have been implicated in regulation of pancreatic exocrine secretion. In particular, autonomic nervous system activity, notably cholinergic, has been shown to affect the secretory status of the pancreatic acinar cell. In addition, several biologically active peptides including bombesin, cholecystokinin (CCK), secretin, vasoactive intestinal peptide (VIP), substance P, gastrin and stimulation of cholinergic (muscarinic) receptors with carbachol have been shown to stimulate pancreatic enzyme secretion both in vivo and in vitro. Certain controversy regarding the role of the sympathetic nervous system in regulation of pancreatic exocrine secretion does exist. For example, several studies with agonists and antagonists of noradrenergic and dopaminergic receptor subtypes suggest a stimulatory effect on pancreatic fluid, electrolyte and enzyme secretion. However, these responses are species-specific and variations inherent to the model have been described. Dopamine administration has been shown to stimulate pancreatic bicarbonate and enzyme secretion in a variety of species including mice, dogs, and man. Radioligand binding studies with 3H-dopamine have revealed the presence of high- and low-affinity dopamine binding sites in dog pancreatic acinar cells. Stimulation of these receptors has been correlated with dose-dependent increases in intracellular cAMP levels.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

19.
  • 1.1. The neuronal geometry of Retzius (R) cells in two species of leech (Hirudo medicinalis and Haemopis sanguisuga) was investigated by intracellular injection of horseradish peroxidase.
  • 2.2. Each R cell sends major branches into the ipsilateral segmental nerves and, via the ipsilateral connectives, into the anterior and posterior adjacent ganglia.
  • 3.3. No structural connection between the proximal axons of the two R cells could be detected, although numerous dendrites were demonstrated, some of which extended across the midline of the ganglion.
  • 4.4. No major differences were found between the R cell morphology of the two species.
  相似文献   

20.
The pancreas is vulnerable to ethanol toxicity, but the pathogenesis of alcoholic pancreatitis is not fully defined. The intracellular oxidative balance and the characteristics of the secretion of isolated rat pancreatic acinar cells stimulated with the cholecystokinin analogue cerulein were assayed after acute oral ethanol (4 g/kg) load. Pancreatic acinar cells from ethanol-treated rats showed a significant (p < 0.02) lower content of total glutathione and protein sulfhydryls, and higher levels of oxidized glutathione (p < 0.03), malondialdehyde, and protein carbonyls (p < 0.05). Ethanol-intoxicated acinar cells showed a lower baseline amylase output compared to controls, with the difference being significantly exacerbated by cerulein stimulation. After cerulein, the release of protein carbonyls by ethanol-treated cells was significantly increased, whereas that of protein sulfhydryls was significantly decreased. In conclusion, ethanol oxidatively damages pancreatic acinar cells; cerulein stimulation is followed by a lower output of amylase and by a higher release of oxidized proteins by pancreatic acinar cells from ethanol-treated rats. These findings may account for the decreased exocrine function, intraductular plug formation, and protein precipitation in alcoholic pancreatitis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号