首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We report the characterization of the dominant-negative CLA4t allele of the budding yeast CLA4 gene, encoding a member of the p21-activated kinase (PAK) family of protein kinases, which, together with its homologue STE20, plays an essential role in promoting budding and cytokinesis. Overproduction of the Cla4t protein likely inhibits both endogenous Cla4 and Ste20 and causes a delay in the onset of anaphase that correlates with inactivation of Cdc20/anaphase-promoting complex (APC)-dependent proteolysis of both the cyclinB Clb2 and securin. Although the precise mechanism of APC inhibition by Cla4t remains to be elucidated, our results suggest that Cla4 and Ste20 may regulate the first wave of cyclinB proteolysis mediated by Cdc20/APC, which has been shown to be crucial for activation of the mitotic exit network (MEN). We show that the Cdk1-inhibitory kinase Swe1 is required for the Cla4t-dependent delay in cell cycle progression, suggesting that it might be required to prevent full Cdc20/APC and MEN activation. In addition, inhibition of PAK kinases by Cla4t prevents mitotic exit also by a Swe1-independent mechanism impinging directly on the MEN activator Tem1.  相似文献   

2.
The p21-activated kinases (PAKs) are effectors for the Rho-family GTPase Cdc42p. Here we define the in vivo function of the kinase activity of the budding yeast PAK Cla4p, using cla4 alleles that are specifically inhibited by a cell-permeable compound that does not inhibit the wild-type kinase. CLA4 kinase inhibition in cells lacking the partially redundant PAK Ste20p causes reversible SWE1-dependent cell-cycle arrest and gives rise to narrow, highly elongated buds in which both actin and septin are tightly polarized to bud tips. Inhibition of Cla4p does not prevent polarization of F-actin, and cytokinesis is blocked only in cells that have not formed a bud before inhibitor treatment; cell polarization and bud emergence are not affected by Cla4p inhibition. Although localization of septin to bud necks is restored in swe1Delta cells, cytokinesis remains defective. Inhibition of Cla4p activity in swe1Delta cells causes a delay of bud emergence after cell polarization, indicating that this checkpoint may mediate an adaptive response that is capable of promoting budding when Cla4p function is reduced. Our data indicate that CLA4 PAK activity is required at an early stage of budding, after actin polarization and coincident with formation of the septin ring, for early bud morphogenesis and assembly of a cytokinesis site.  相似文献   

3.
In Saccharomyces cerevisiae, the highly conserved Rho-type GTPase Cdc42 is essential for cell division and controls cellular development during mating and invasive growth. The role of Cdc42 in mating has been controversial, but a number of previous studies suggest that the GTPase controls the mitogen-activated protein (MAP) kinase cascade by activating the p21-activated protein kinase (PAK) Ste20. To further explore the role of Cdc42 in pheromone-stimulated signaling, we isolated novel alleles of CDC42 that confer resistance to pheromone. We find that in CDC42(V36A) and CDC42(V36A, I182T) mutant strains, the inability to undergo pheromone-induced cell cycle arrest correlates with reduced phosphorylation of the mating MAP kinases Fus3 and Kss1 and with a decrease in mating efficiency. Furthermore, Cdc42(V36A) and Cdc42(V36A, I182T) proteins show reduced interaction with the PAK Cla4 but not with Ste20. We also show that deletion of CLA4 in a CDC42(V36A, I182T) mutant strain suppresses pheromone resistance and that overexpression of CLA4 interferes with pheromone-induced cell cycle arrest and MAP kinase phosphorylation in CDC42 wild-type strains. Our data indicate that Cla4 has the potential to act as a negative regulator of the mating pathway and that this function of the PAK might be under control of Cdc42. In conclusion, our study suggests that control of pheromone signaling by Cdc42 not only depends on Ste20 but also involves interaction of the GTPase with Cla4.  相似文献   

4.
During the cell cycle of the yeast Saccharomyces cerevisiae, the actin cytoskeleton and cell surface growth are polarized, mediating bud emergence, bud growth, and cytokinesis. We have determined whether p21-activated kinase (PAK)-family kinases regulate cell and actin polarization at one or several points during the yeast cell cycle. Inactivation of the PAK homologues Ste20 and Cla4 at various points in the cell cycle resulted in loss of cell and actin cytoskeletal polarity, but not in depolymerization of F-actin. Loss of PAK function in G1 depolarized the cortical actin cytoskeleton and blocked bud emergence, but allowed isotropic growth and led to defects in septin assembly, indicating that PAKs are effectors of the Rho-guanosine triphosphatase Cdc42. PAK inactivation in S/G2 resulted in depolarized growth of the mother and bud and a loss of actin polarity. Loss of PAK function in mitosis caused a defect in cytokinesis and a failure to polarize the cortical actin cytoskeleton to the mother-bud neck. Cla4-green fluorescent protein localized to sites where the cortical actin cytoskeleton and cell surface growth are polarized, independently of an intact actin cytoskeleton. Thus, PAK family kinases are primary regulators of cell and actin cytoskeletal polarity throughout most or all of the yeast cell cycle. PAK-family kinases in higher organisms may have similar functions.  相似文献   

5.
CLA4, encoding a protein kinase of the PAK type, and CDC11, encoding a septin, were isolated in a screen for synthetic lethality with CHS3, which encodes the chitin synthase III catalytic moiety. Although Ste20p shares some essential function with Cla4p, it did not show synthetic lethality with Chs3p. cla4 and cdc11 mutants exhibited similar morphological and septin localization defects, including aberrant and ectopic septa. Myo1p, which requires septins for localization, formed abnormally wide rings in cla4 mutants. In cultures started with unbudded cells, an inhibitor of Chs3p activity, nikkomycin Z, aggravated the abnormalities of cla4 and cdc11 mutants and gave rise to enlarged necks at the mother-bud junction, leading to cell death. It is concluded that Cla4p is required for the correct localization and/or assembly of the septin ring and that both the septin ring and the Chs3p-requiring chitin ring at the mother-bud neck cooperate in maintaining the neck constricted throughout the cell cycle, a vital function in budding yeast.  相似文献   

6.
The Saccharomyces cerevisiae p21-activated kinases, Ste20p and Cla4p, have individual functions but appear to share an essential function(s) as well because a strain lacking both kinases is inviable. To learn more about the shared function, we sought new mutations that were lethal in the absence of CLA4. This approach led to the identification of at least 10 complementation groups designated NCS (need CLA4 to survive). As for ste20 cla4-75 mutants, most ncs cla4-75 double mutants were defective for septin localization during budding. One group, NCS1/RRD1 (YIL153w), did not confer this defect, however, and we investigated its function further. ncs1Delta cla4Delta cells arrested with elongated buds and short mitotic spindles. The morphological defects and lethality were suppressed by mutations that abrogate the cell cycle morphogenetic checkpoint, CDC28Y19F or swe1Delta. The connection to the cell cycle may be direct, as we detected a Cla4p-Cdc28p complex. NCS1 encodes a protein with significant similarity to a mammalian phosphotyrosyl phosphatase activator (PTPA) regulatory subunit for type 2A protein phosphatases (PP2As). Genetic and biochemical evidence suggested that the phosphatase Sit4p is a target for Ncs1p. First, CLA4 and SIT4 were synthetically lethal. Second, Ncs1p and its yeast paralog, Noh1p (Rrd2p), bound to the catalytic domain of Sit4p in vitro, and Ncs1p could be immunoprecipitated with Sit4p but not with another PP2A (Pph21p) from yeast cell extracts. Strains lacking both NCS1 and NOH1 were inviable and arrested as unbudded cells, implying that PTPA function is required for proper G(1) progression.  相似文献   

7.
黄曲霉Aspergillus flavus是机会性的动物和植物致病性丝状真菌,保守的PAK(p21-activated protein kinases)样蛋白激酶对信号传导、细胞周期进程和细胞形态发生具有重要作用.通过同源重组方法构建敲除突变株(ΔAflcla4),研究Aflcla4基因对黄曲霉营养生长、分生孢子产生、...  相似文献   

8.
Assembly at the mother-bud neck of a filamentous collar containing five septins (Cdc3, Cdc10, Cdc11, Cdc12, and Shs1) is necessary for proper morphogenesis and cytokinesis. We show that Cdc10 and Cdc12 possess GTPase activity and appropriate mutations in conserved nucleotide-binding residues abrogate GTP binding and/or hydrolysis in vitro. In vivo, mutants unable to bind GTP prevent septin collar formation, whereas mutants that block GTP hydrolysis do not. GTP binding-defective Cdc10 and Cdc12 form soluble heteromeric complexes with other septins both in yeast and in bacteria; yet, unlike wild-type, mutant complexes do not bind GTP and do not assemble into filaments in vitro. Absence of a p21-activated protein kinase (Cla4) perturbs septin collar formation. This defect is greatly exacerbated when combined with GTP binding-defective septins; conversely, the septin collar assembly defect of such mutants is suppressed efficiently by CLA4 overexpression. Cla4 interacts directly with and phosphorylates certain septins in vitro and in vivo. Thus, septin collar formation may correspond to septin filament assembly, and requires both GTP binding and Cla4-mediated phosphorylation of septins.  相似文献   

9.
Two closely related p21-activated kinases from Saccharomyces cerevisiae, Ste20 and Cla4, interact with and are regulated by Cdc42, a small Rho-like GTPase. These kinases are argued to perform a common essential function, based on the observation that the single mutants are viable whereas the double mutant is inviable. Despite having a common upstream regulator and at least one common function, these molecules also have many distinct cellular signaling roles. Ste20 signals upstream of several mitogen-activated protein kinase cascades (e.g., pheromone response, filamentous growth, and high osmolarity), and Cla4 signals during budding and cytokinesis. In order to investigate how these kinases are directed to distinct functions, we sought to identify specificity determinants within Ste20 and Cla4. To this end, we constructed both chimeric fusions and point mutants and tested their ability to perform unique and shared cellular roles. Specificity determinants for both kinases were mapped to the C-terminal kinase domains. Remarkably, the substitution of a single amino acid, threonine 818, from Ste20 into an otherwise wild-type Cla4, Cla4D772T, conferred the ability to perform many Ste20-specific functions.  相似文献   

10.
11.
Ste20/PAK serine/threonine protein kinases have been suggested as playing essential roles in cell signalling and morphogenesis as potential targets of Cdc42 and Rac GTPases. We have isolated and characterized the Saccharomyces cerevisiae SKM1 gene, which codes for a novel member of this family of protein kinases. The amino acid sequence analysis of Skm1p revealed the presence of a PH domain and a putative p21-binding domain near its amino terminus, suggesting its involvement in cellular signalling or cytoskeletal functions. However, deletion of SKM1 produced no detectable phenotype under standard laboratory conditions. Moreover, disruption of each of the two other S. cerevisiae Ste20/PAK-like kinase-encoding genes, STE20 and CLA4 , in skm1 backgrounds, showed that Skm1p is not redundant with Ste20p or Cla4p. Interestingly, overexpression of SKM1 led to morphological alterations, indicating a possible role for this protein in morphogenetic control. Furthermore, overproduction of Skm1p lacking its N-terminus caused growth arrest. This effect was also seen when similarly truncated versions of Ste20p or Cla4p were overexpressed. We further observed that overproduction of this C-terminal fragment of Skm1p complements the mating defect of a ste20 mutant strain. These results suggest that the N-terminal domains of S. cerevisiae Ste20/PAK-like protein kinases share a negative regulatory function and play a role in substrate specificity.  相似文献   

12.
The SEC14SC gene encodes the phosphatidylinositol/phosphatidylcholine transfer protein (PI/PC-TP) of Saccharomyces cerevisiae. The SEC14SC gene product (SEC14pSC) is associated with the Golgi complex as a peripheral membrane protein and plays an essential role in stimulating Golgi secretory function. We report the characterization of SEC14YL, the structural gene for the PI/PC-TP of the dimorphic yeast Yarrowia lipolytica. SEC14YL encodes a primary translation product (SEC14YL) that is predicted to be a 497-residue polypeptide of which the amino- terminal 300 residues are highly homologous to the entire SEC14pSC, and the carboxyl-terminal 197 residues define a dispensible domain that is not homologous to any known protein. In a manner analogous to the case for SEC14pSC, SEC14pYL localizes to punctate cytoplasmic structures in Y. lipolytica that likely represent Golgi bodies. However, SEC14pYL is neither required for the viability of Y. lipolytica nor is it required for secretory pathway function in this organism. This nonessentiality of SEC14pYL for growth and secretion is probably not the consequence of a second PI/PC-TP activity in Y. lipolytica as cell-free lysates prepared from delta sec14YL strains are devoid of measurable PI/PC-TP activity in vitro. Phenotypic analyses demonstrate that SEC14pYL dysfunction results in the inability of Y. lipolytica to undergo the characteristic dimorphic transition from the yeast to the mycelial form that typifies this species. Rather, delta sec14YL mutants form aberrant pseudomycelial structures as cells enter stationary growth phase. The collective data indicate a role for SEC14pYL in promoting the differentiation of Y. lipolytica cells from yeast to mycelia, and demonstrate that PI/PC-TP function is utilized in diverse ways by different organisms.  相似文献   

13.
The involvement of p21-activated kinases (PAKs) in important cellular processes such as regulation of the actin skeleton morphology, transduction of signals controlling gene expression, and execution of programmed cell death has directed attention to the regulation of the activity of these kinases. Here we report that activation of PAK2 by p21 GTPases can be strongly potentiated by cellular tyrosine kinases. PAK2 became tyrosine phosphorylated in its N-terminal regulatory domain, where Y130 was identified as the major phosphoacceptor site. Tyrosine phosphorylation-mediated superactivation of PAK2 could be induced by overexpression of different Src kinases or by inhibiting cellular tyrosine phosphatases with pervanadate and could be blocked by the Src kinase inhibitor PP1 or by mutating the Y130 residue. Analysis of PAK2 mutants activated by amino acid changes in the autoinhibitory domain or the catalytic domain indicated that GTPase-induced conformational changes, rather than catalytic activation per se, rendered PAK2 a target for tyrosine phosphorylation. Thus, PAK activation represents a potentially important point of convergence of tyrosine kinase- and p21 GTPase-dependent signaling pathways.  相似文献   

14.
Yarrowia lipolytica is a dimorphic fungus whose morphology is controlled by several factors such as pH and different compounds. To determine if the STE11-mitogen-activated protein kinase (MAPK) pathway plays a role in dimorphism of Y. lipolytica, we isolated the gene encoding a Mapkkk. The isolated gene (STE11) has an ORF of 2832 bp without introns, encoding a protein of 944 amino acids, with a theoretical Mr of 100.9 kDa, that exhibits high homology to fungal Mapkkks. Disruption of the STE11 gene was achieved by the pop-in/pop-out procedure. Growth rate and response to osmotic stress or agents affecting wall integrity were unaffected in the deleted mutants, but they lost the capacity to mate and to grow in the mycelial form. Both alterations were reverted by transformation with the wild-type STE11 gene. The Y. lipolytica STE11 gene driven by two different promoters was unable to complement Saccharomyces cerevisiae ste11Delta mutants, although the gene was transcribed. Also, a wild-type MAPKKK gene from Ustilago maydis failed to complement Y. lipolyticaDeltaste11 mutants. Both negative results were attributed to a failure of the transgenic gene products to interact with the corresponding regulatory and scaffold proteins. This hypothesis was supported by the observation that a truncated version of the U. maydis MAPKKK gene reversed mating and dimorphic defects in the mutants. All these results demonstrate that the MAPK pathway is essential for both morphogenesis and mating in Y. lipolytica.  相似文献   

15.
Signal transduction pathways that co-regulate a given biological process often are organized into networks by molecules that act as coincidence detectors. Phosphoinositides and the Rho-type GTPase Cdc42 regulate overlapping processes in all eukaryotic cells. However, the coincidence detectors that link these pathways into networks remain unknown. Here we show that the p21-activated protein kinase-related kinase Cla4 of yeast integrates signaling by Cdc42 and phosphatidylinositol 4-phosphate (PI4P). We found that the Cla4 pleckstrin homology (PH) domain binds in vitro to several phosphoinositide species. To determine which phosphoinositides regulate Cla4 in vivo, we analyzed phosphatidylinositol kinase mutants (stt4, mss4, and pik1). This indicated that the plasma membrane pool of PI4P, but not phosphatidylinositol 4,5-bisphosphate or the Golgi pool of PI4P, is required for localization of Cla4 to sites of polarized growth. A combination of the Cdc42-binding and PH domains of Cla4 was necessary and sufficient for localization to sites of polarized growth. Point mutations affecting either domain impaired the ability of Cla4 to regulate cell morphogenesis and the mitotic exit network (localization of Lte1). Therefore, Cla4 must retain the ability to bind both Cdc42 and phosphoinositides, the hallmark of a coincidence detector. PI4P may recruit Cla4 to the plasma membrane where Cdc42 activates its kinase activity and refines its localization to cortical sites of polarized growth. In mammalian cells, the myotonic dystrophy-related Cdc42-binding kinase possesses p21-binding and PH domains, suggesting that this kinase may be a coincidence detector of signaling by Cdc42 and phosphoinositides.  相似文献   

16.
17.
将解脂耶氏酵母与蛋白质分泌有关的TSR1基因编码区部分缺失的DNA片段转化一株解脂耶氏酵母,通过体内同源重组,部分缺失的外源tsr1片段取代了酵母染色体上的正常的TSR1基因,从而获得tsr1的转化子。Southern杂交结果表明,用该法成功地构建了tsr1突变体,这为进一步研究解脂耶氏酵母TSR1基因的功能奠定了基础。  相似文献   

18.
Lte1, a protein important for exit from mitosis, localizes to the bud cortex as soon as the bud forms and remains there until cells exit from mitosis. Ras, the Rho GTPase Cdc42 and its effector the protein kinase Cla4 are required for Lte1’s association with the bud cortex. Here we investigate how Ras, and the Cdc42 effector Cla4 regulate the localization of Lte1. We find that Ras2 and Lte1 associate in stages of the cell cycle when Lte1 is phosphorylated and associated with the bud cortex and that this association requires CLA4. Additionally, RAS1 and RAS2 are required for CLA4-dependent Lte1 phosphorylation. Our findings suggest that Cla4-dependent phosphorylation promotes the initial association of Lte1 with Ras at the bud cortex and that Ras is required to stabilize phosphorylated forms of Lte1 at the bud cortex. Our results also raise the interesting possibility that the localization of Lte1 affects the protein’s ability to promote mitotic exit.  相似文献   

19.
Yarrowia lipolytica is a potentially useful host for heterologous protein production. To develop an efficient culture method for high cell density cultivation and heterologous gene expression of Y. lipolytica, the effects of medium components and their concentrations on the growth of Y. lipolytica have been investigated. Addition of yeast extract to the culture media was found to significantly reduce the long lag phase encountered when Y. lipolytica was cultivated in synthetic culture media containing high concentrations of glycerol. Therefore, by enriching with 0.3% yeast extract the synthetic culture medium containing 15% glycerol, we could cultivate Y. lipolytica up to 83 g/L dry cell weight in a batch culture. Furthermore, over 100 g/L and 88 units/mL of rice alpha-amylase activity were obtained in less than 50 h with a one-step feeding process in which a recombinant Y. lipolytica expressing rice alpha-amylase was cultivated in the 10% glycerol medium enriched with 0.3% yeast extract and fed only once with the concentrated feeding medium (60% glycerol). The easy cultivation of recombinant Y. lipolytica to a high cell density may strengthen its position as a host for heterologous protein production.  相似文献   

20.
Claviceps purpurea , the ergot fungus, is a highly specialized pathogen of grasses; its colonization of host ovarian tissue requires an extended period of strictly polarized, oriented growth towards the vascular tissue. To understand this process, we study the role of signalling factors affecting polarity and differentiation. We showed that the small GTPase Cdc42 is involved in polarity, sporulation and in planta growth in C. purpurea . Here we present evidence that the GTPase Rac has an even stronger and, in some aspects, inverse impact on growth and development: Δ rac mutants form coralline-like colonies, show hyper-branching, loss of polarity, sporulation and ability to penetrate. Functional analyses and yeast two-hybrid studies prove that the p21-activated kinase Cla4 is a major downstream partner of Rac. Phosphorylation assays of MAP kinases and expression studies of genes encoding reactive oxygen species (ROS)-scavenging and -generating enzymes indicate a function of Rac and Cla4 in fungal ROS homoeostasis which could contribute to their drastic impact on differentiation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号