首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The human embryonic fibroblasts used in this study show pronounced inhibition of growth when reaching a critical cell density. High cell density and growth inhibition has previously been mimicked by the addition of glutaraldehyde-fixed cells or of isolated plasma membranes to sparsely seeded proliferating fibroblasts (Wieser, R. J., R. Heck, and F. Oesch, 1985, Exp. Cell Res., 158:493-499). In this report, we describe the successful solubilization of the growth-inhibiting glycoproteins and their covalent coupling to silicabeads (10 microns), which had been derivatized with 3-isothiocyanatopropyltriethoxysilane. The beads, bearing the plasma membrane proteins, were added to sparsely seeded, actively proliferating fibroblasts, and growth was measured by the determination of cell number or of incorporation of [3H]thymidine into DNA. The growth was inhibited in a concentration-dependent manner, whereby 50% inhibition was achieved with 0.3 micrograms of immobilized protein added to 5 X 10(3) cells. Terminal galactose residues of plasma membrane glycoproteins with N-glycosydically bound carbohydrates were responsible for the inhibition of growth. Dense cultures of human fibroblasts are characterized by an accelerated synthesis of procollagen type III. We have found that this cellular response can also be induced by the addition of immobilized plasma membrane glycoproteins to sparsely seeded cells. These observations support the conclusion that the addition of immobilized plasma membrane glycoproteins to sparsely seeded fibroblasts mimics the situation occurring at high cell density. These results show that cell-cell contacts via plasma membrane glycoproteins carrying terminal galactose residues are important for the regulation of the proliferation of cultured human fibroblasts and presumably of the accelerated synthesis of collagen type III.  相似文献   

2.
Defining the cell surface proteome has profound importance for understanding cell differentiation and cell–cell interactions, as well as numerous pathogenic abnormalities. Owing to their hydrophobic nature, plasma membrane proteins that reside on the cell surface pose analytical challenges and, despite efforts to overcome difficulties, remain under-represented in proteomic studies. Limitations in the classically employed ultracentrifugation-based approaches have led to the invention of more elaborate techniques for the purification of cell surface proteins. Three of these methods – cell surface coating with cationic colloidal silica beads, biotinylation and chemical capture of surface glycoproteins – allow for marked enrichment of this subcellular proteome, with each approach offering unique advantages and characteristics for different experiments. In this article, we introduce the principles of each purification method and discuss applications from the recent literature.  相似文献   

3.
The growth of diploid human fibroblasts has previously been shown to be regulated mainly by the extent of cell-cell contacts [R. J. Wieser and F. Oesch (1986) J. Cell Biol. 103, 361], these contacts being effective only when terminal, beta-glycosidically linked galactose residues were present on plasma membrane glycoproteins. These studies, in which a high cell density in sparse cell cultures has been mimicked by the addition of immobilized plasma membrane glycoproteins, have been further extended to investigate the role of terminal galactose residues directly in cell cultures. The studies presented herein show that (i) culturing human fibroblasts in the presence of beta-galactosidase resulted in an approximately twofold higher saturation density, as well as a twofold higher proliferation rate at high cell densities when compared to the rates found in control cultures. (ii) The presence of alpha-lactalbumin in the culture medium, which acts as a modifier of the activity of galactosyltransferase, had the same effect as beta-galactosidase. (iii) Addition of the lectin I from Bandeiraea simplicifolia (BS I), which is specific for terminal galactose residues, resulted in an increase in the proliferation rate of cell cultures at high cell densities, while the proliferation was not affected at low cell densities. These data show that the presence of terminal, beta-glycosidically linked galactose is vital for the efficient growth control of normal cells.  相似文献   

4.
N-Acetylneuraminic acid-bearing glycoproteins and lectins isolated from the plasma membrane of GH3 cells are coupled covalently to glass dishes and are used as substrates for cell culture. Under serum-free, hormone-supplemented culture conditions these coupled molecules inhibit the growth rate of GH3 cells. This inhibition is non-toxic and is concentrationand time-dependent. For an inhibition of 50% 2 × 106 coupled molecules contacting one cell are needed. The data suggest that specific plasma membrane-located glycoproteins and lectins are involved in the ‘density-dependent growth regulation’.  相似文献   

5.
The plasma membrane is a complex organelle responsible for many cellular functions. In addition to mediating the exchange of components with the extracellular fluid, the plasma membrane is involved in cell adhesion to matrix proteins in vivo and in vitro. In vitro, adherent cells have three distinct plasma membrane domains to carry out these functions: one attached to the substrate (ventral); another exposed to the media (dorsal); and an intracellular domain involved in endocytosis and secretion. A technique has been developed for the rapid isolation of these specific domains from HeLa cells immediately following adhesion to a gelatin substrate. The isolation procedure utilizes the tight binding of cationic colloidal silica to the dorsal plasma membrane domain of attached cells. Following silica binding and cell lysis, the silica-coated dorsal plasma membrane domain is readily separated from intracellular plasma membrane components by virtue of the high density of the silica pellicle, and the intact ventral plasma membrane domain remains attached to the gelatin substrate. Fluorescence and electron microscopy and biochemical studies using 125I-lactoperoxidase labeling, 125I-labeled wheat germ agglutinin binding, and [3H]-fucose incorporation into plasma membrane glycoproteins confirmed the separation of these three topologically distinct plasma membrane domains. The fractions isolated by the technique contained essentially all of the plasma membrane components present in intact cells. This unique membrane-isolation procedure is now being used to analyze membrane flow during plasma membrane domain formation accompanying cell adhesion to an extracellular matrix.  相似文献   

6.
We have previously described a group of three plasma membrane glycoproteins that are recognized by an adhesion-disrupting antiserum and that are involved in fibronectin-mediated BHK cell adhesion. A peculiar property of these molecules is their resistance to tryptic digestion. We have now extended this study in the attempt to identify the active component within this group of molecules. SR/BALB mouse fibroblasts, used in this work, expose at their surface only two trypsin-resistant glycoproteins, gp1 (150 K) and gp2 (135 K), that are recognized by the adhesion-disrupting anti-BHK serum. Controlled proteolysis of the cell surface in the presence of a reducing agent results in the loss of cell adhesion to fibronectin-coated substratum. gp2 is selectively cleaved under these conditions. Moreover, cells treated with trypsin and reducing agent can no longer adsorb the adhesion-relevant antibodies from the anti-BHK serum. These data indicate that gp2 plays a critical role in the adhesion of SR/BALB fibroblasts to fibronectin-coated substratum, and that disulfide bonds are important in the conformation and function of this molecule.  相似文献   

7.
We have measured the movement of newly synthesized phosphatidylethanolamine (PE) molecules from sites of intracellular synthesis to the plasma membrane in cultured V79 Chinese hamster fibroblasts. Plasma membrane PE was distinguished from intracellular PE by its derivatization with an amino-reactive reagent, trinitrobenzene sulfonic acid, under nonpermeating conditions. Within minutes after the addition of radiolabeled precursors of PE to the culture medium, radiolabeled PE appeared at the plasma membrane. The fraction of radiolabeled PE molecules appearing at the plasma membrane increased rapidly over a 2-h period and then increased very slowly for several days to a constant specific radioactivity. By measuring the release of radiolabeled secretory proteins, we determined that the transport of newly synthesized proteins to the cell surface occurred more slowly than the transport of PE. Preincubation of cells with either cytochalasin B, cytochalasin D, colchicine, oncobendazole, sodium azide, 2-deoxyglucose, dinitrophenol, p-trifluoromethoxyphenylhydrazone, or monensin did not block the transport of de novo synthesized PE; however, incubation of cells in culture medium at 2 degrees C effectively halted the appearance of new PE molecules at the plasma membrane. When cells which had been incubated at 2 degrees C were warmed, PE molecules from intracellular PE pools once again began to appear at the plasma membrane. These results suggest that the rapid transport of newly synthesized PE molecules to the plasma membrane occurs by a mechanism independent of that used for the transport of newly synthesized proteins.  相似文献   

8.
Stable mammalian cell lines are excellent tools for the expression of secreted and membrane glycoproteins. However, structural analysis of these molecules is generally hampered by the complexity of N‐linked carbohydrate side chains. Cell lines with mutations are available that result in shorter and more homogenous carbohydrate chains. Here, we use preparative fluorescence‐activated cell sorting (FACS) and site‐specific gene excision to establish high‐yield glycoprotein expression for structural studies with stable clones derived from the well‐established Lec3.2.8.1 glycosylation mutant of the Chinese hamster ovary (CHO) cell line. We exemplify the strategy by describing novel clones expressing single‐chain hepatocyte growth factor/scatter factor (HGF/SF, a secreted glycoprotein) and a domain of lysosome‐associated membrane protein 3 (LAMP3d). In both cases, stable GFP‐expressing cell lines were established by transfection with a genetic construct including a GFP marker and two rounds of cell sorting after 1 and 2 weeks. The GFP marker was subsequently removed by heterologous expression of Flp recombinase. Production of HGF/SF and LAMP3d was stable over several months. 1.2 mg HGF/SF and 0.9 mg LAMP3d were purified per litre of culture, respectively. Homogenous glycoprotein preparations were amenable to enzymatic deglycosylation under native conditions. Purified and deglycosylated LAMP3d protein was readily crystallized. The combination of FACS and gene excision described here constitutes a robust and fast procedure for maximizing the yield of glycoproteins for structural analysis from glycosylation mutant cell lines.  相似文献   

9.
Summary Five major membrane glycoproteins of the BHK-B4 hamster fibroblast plasma membrane have been identified by binding specific rabbit antibodies to the cell surface and by recovering the detergent solubilized immunocomplexes with Protein A-Sepharose immunoadsorption. These glycoproteins, designated as gp45, gp65, gp95, gp130 and gp140, are exposed at the cell surface since: (i) they were accessible to antibodies in intact viable cells; (ii) they were radioiodinated by the lactoperoxidase-glucose oxidase procedure; and (iii) they were cleaved by proteolytic enzymes in conditions affecting only the cell surface. Among these glycoproteins the gp130 is the predominant component and its exposed portion is characterized by lack of sensitivity to trypsin cleavage. Glycoproteins of different molecular weight, but immunologically related to the major hamster membrane glycoproteins, have been detected at the surface of both rat and mouse fibroblasts.  相似文献   

10.
Directional cellular locomotion is thought to involve localized intracellular calcium changes and the lateral transport of cell surface molecules. We have examined the roles of both calcium and cell surface glycoprotein redistribution in the directional migration of two murine fibroblastic cell lines, NIH 3T3 and SV101. These cell types exhibit persistent, cathode directed motility when exposed to direct current electric fields. Using time lapse phase contrast microscopy and image analysis, we have determined that electric field-directed locomotion in each cell type is a calcium independent process. Both exhibit cathode directed motility in the absence of extracellular calcium, and electric fields cause no detectable elevations or gradients of cytosolic free calcium. We find evidence suggesting that galvanotaxis in these cells involves the lateral redistribution of plasma membrane glycoproteins. Electric fields cause the lateral migration of plasma membrane concanavalin A receptors toward the cathode in both NIH 3T3 and SV101 fibroblasts. Exposure of directionally migrating cells to Con A inhibits the normal change of cell direction following a reversal of electric field polarity. Additionally, when cells are plated on Con A- coated substrata so that Con A receptors mediate cell-substratum adhesion, cathode-directed locomotion and a cathodal accumulation of Con A receptors are observed. Immunofluorescent labeling of the fibronectin receptor in NIH 3T3 fibroblasts suggests the recruitment of integrins from large clusters to form a more diffuse distribution toward the cathode in field-treated cells. Our results indicate that the mechanism of electric field directed locomotion in NIH 3T3 and SV101 fibroblasts involves the lateral redistribution of plasma membrane glycoproteins involved in cell-substratum adhesion.  相似文献   

11.
Phagosomal Proteins of Dictyostelium discoideum   总被引:1,自引:0,他引:1  
ABSTRACT. In recognizing food particles, Dictyostelium cell-surface molecules initiate cytoskeletal rearrangements that result in phagosome formation. After feeding D. discoideum cells latex beads, early phagosomes were isolated on sucrose step gradietns. Protein analyses of these vesicles showed that they contained glycoproteins and surface-labeled species corresponding to integral plasma membrane proteins. Cytoskeletal proteins also were associated with phagosomes, including myosin II, actin and a 30 kDa-actin bundling protein. As seen by the acridine orange fluorescence of vesicles containing bacteria, phagosomes were acidified rapidly by a vacuolar H+-ATPase that was detected by immunoblotting. Except for the loss of cytoskeletal proteins, few other changes over time were noted in the protein profiles of phagosomes, suggesting that phagosome maturation was incomplete. The indigestibility of the beads possibly inhibited further endocytic processing, which has been observed by others. Since nascent phagosomes contained molecules of both the cytoskeleton and plasma membrane, they will be useful in studies aimed at identifying specific protein associations occurring between membrane proteins and the cytoskeleton during phagocytosis.  相似文献   

12.
We have identified a family of abundant peripheral plasma membrane glycoproteins that is unique to flowering plants. They are identified by a monoclonal antibody, MAC 207, that recognizes an epitope containing L-arabinose and D-glucuronic acid. Immunofluorescence and immunogold labeling studies locate the MAC 207 epitope to the outer surface of the plasma membrane both in protoplasts and in intact tissues. In some cells MAC 207 also binds to the vacuolar membrane, probably reflecting the movement of the plasma membrane glycoproteins in the endocytic pathway. The epitope recognized by MAC 207 is also present on a distinct soluble proteoglycan secreted into the growth medium by carrot (Daucus carota) suspension culture cells. Biochemical evidence identifies this neutral proteoglycan as a member of the large class of arabinogalactan proteins (AGPs), and suggests a structural relationship between it and the plasma membrane glycoproteins. AGPs have the property of binding to beta-glycans, and we therefore propose that one function of the AGP-related, plasma membrane-associated glycoproteins may be to act as cell surface attachment sites for cell wall matrix polysaccharides.  相似文献   

13.
Glycoproteins in the plasma membrane of rat hepatoma cells were labeled at their externally exposed tyrosine residues with 131I and at their galactose and sialic acid residues with 3H. The degradation of both isotopes in the total cell protein fraction, in glycoproteins purified by concanavalin A, and in glycoproteins separated on two-dimensional gels was determined. Similarly, the total cellular membrane glycoproteins were metabolically labeled with [35S]methionine and [3H]fucose. The fate of both incorporated labels was followed by lectin chromatography or by precipitation of the proteins with specific antibodies followed by electrophoretic gel separation. In both labeling experiments, the carbohydrate markers were lost from the ligand- recognized fraction with similar kinetics as from the total cell protein fraction. In some glycoprotein species which were separated by two-dimensional gel electrophoresis, the polypeptide portion exhibited up to a twofold slower rate of degradation relative to that of the carbohydrate moiety. This difference is most pronounced in carbohydrate- rich glycoproteins. To corroborate this finding, double-labeled membrane glycoproteins were incorporated into reconstituted phospholipid vesicles which were then transferred via fusion into the plasma membrane of mouse fibroblasts. Both the polypeptide and carbohydrate moieties of the transferred membrane glycoproteins were degraded with the same relative kinetics as in the original hepatoma cells. The rate of degradation is mostly a function of the structural properties of the membrane components as shown by the preservation of metabolically stable fucogangliosides of Reuber H-35 hepatoma cells transferred onto the fibroblasts. The technique of insertion of membrane components into the plasma membrane of another cell should assist in the elucidation of the exact route and mechanism of membrane protein destruction.  相似文献   

14.
Many human inherited disorders cause protein N-glycosylation defects, but there are few cellular markers to test gene complementation for such defects. Plasma membrane glycoproteins are potential biomarkers because they may be reduced or even absent in plasma membranes of glycosylation-deficient cells. We combined stable isotope labeling by amino acids in cell culture (SILAC) with linear ion trap mass spectrometry (LTQ Orbitrap(TM)) to identify and quantify membrane proteins from wild-type CHO and glycosylation-deficient CHO (Lec9) cells. We identified 165 underrepresented proteins from 1447 unique quantified proteins, including 18 N-glycosylated plasma membrane proteins. Using various methods, we found that intercellular cell adhesion molecule 1 (ICAM-1) was reduced in Lec9 cells and in fibroblasts from 31 congenital disorder of glycosylation (CDG) patients compared with normal controls. Mannose supplementation of phosphomannose isomerase-deficient CDG-Ib (MPI-CDG) cells and complementation with PMM2 in PMM2-deficient CDG-Ia (PMM2-CDG) cells partially corrected hypoglycosylation based on increased ICAM-1 presence on the plasma membrane. These data indicate that ICAM-1 could be a useful hypoglycosylation biomarker to assess gene complementation of CDG-I patient cells and to monitor improved glycosylation in response to therapeutic drugs.  相似文献   

15.
Purification and characterization of human lysosomal membrane glycoproteins   总被引:24,自引:0,他引:24  
Two human cell lysosomal membrane glycoproteins of approximately 120 kDa, hLAMP-1 and hLAMP-2, were identified by use of monoclonal antibodies prepared against U937 myelomonocytic leukemia cells or blood mononuclear cells. The two glycoproteins were purified by antibody affinity chromatography and each was found to be a major constituent of human spleen cells, representing approximately 0.05% of the total detergent-extractable protein. Both molecules were highly glycosylated, being synthesized as polypeptides of 40 to 45 kDa and cotranslationally modified by the addition of Asn-linked oligosaccharides. NH2-terminal sequence analysis indicated that each was approximately 50% identical to the corresponding mLAMP-1 or mLAMP-2 of mouse cells. Electron microscopic studies of human blood monocytes, HL-60, and U937 cells demonstrated that the principal location of these glycoproteins was intracellular, in vacuoles and lysosomal structures but not in the peroxidase-positive granules of monocytes. Transport of the proteins between organelles was evidenced by their marked accumulation in the membranes of phagolysosomes. A fraction of each glycoprotein was also detected on the plasma membrane of U937 and HL-60 cells but not on a variety of other tissue culture cells. This cell-surface expression may be differentiation related, since the proteins were not detected in the plasma membrane of normal blood monocytes and their expression on U937 and HL-60 cells was reduced when the cells were treated with differentiating agents. Cell-surface expression of both glycoproteins was markedly increased in blood monocytes but not in U937 cells after exposure to the lysosomotropic reagent methylamine HCl, indicating differences in LAMP-associated membrane flow in these cell types.  相似文献   

16.
We have used immunoisolation on a magnetic solid support for the positive selection of stable MDCK transformants which express VSV-G protein via genomic integration of a cloned cDNA. This method is a simple, inexpensive alternative to selection with a fluorescence-activated cell sorter. The G-protein is synthesized in the absence of other viral proteins and is transported to the plasma membrane. The G-positive cells were enriched by immunoselection during normal passage of the transformed population. Using sterile conditions, antibodies to G were incubated with a suspension of transformed cells at 4 degrees C, unbound antibodies were then removed, and the cells were incubated with the immunoabsorbent (3 micron magnetic beads; J. Ugelstad et al. (1983) Nature (London) 303, 95) containing bound IgG molecules against the Fc portion of rabbit IgG. The magnetic properties of the beads were used to retrieve and further wash the immunoselected population. The cells are then removed from the beads by the same trypsinization conditions used for routine passaging and returned to culture. Using this selection scheme we have been able to increase the number of G-expressing cells five- to sevenfold per round; with repeated rounds enrichment from 2 to 74% was obtained. When grown on filters the immunoselected cells were shown to have the same morphology and electrical resistance (150-200 ohm.cm2) as untransformed MDCK II cells. Indirect immunofluorescence staining and [125I]protein A binding assays carried out on these cells demonstrated that G protein was localized exclusively to the basolateral surface as is observed with viral infection.  相似文献   

17.
The human embryonal lung fibroblasts used in this study showed a pronounced inhibition of growth when reaching a critical cell density. This effect has been mimicked by the addition of glutaraldehyde-fixed human fibroblasts to sparsely seeded growing cells. Inhibition of growth was not observed when glutaraldehyde-fixed cells were pretreated with galactosidase or with galactose-specific lectins, or when glutaraldehyde-fixed human or rabbit erythrocytes were added to the proliferating fibroblasts. In addition, glutaraldehyde-fixed mitotic cells were without effect on the proliferation, while cells prepared from sparse culture had lesser potency than cells prepared from confluent cultures. Plasma membranes, isolated from cells of confluent cultures, when added to growing cultures of human fibroblasts inhibited DNA synthesis in a concentration-dependent manner. On the other hand, plasma membranes isolated from sparsely seeded cells had only minor inhibitory potency. When the plasma membranes were isolated from cells treated previously with tunicamycin, an antibiotic which inhibits the synthesis of the oligosaccharide portion of asparagine-linked glycoproteins, the inhibitory effect was abolished. The same effect was observed when plasma membranes were pretreated with galactosidase. These data indicate that the growth of cells in vitro is regulated by specific cell-cell contacts. They also show that one of the molecular reactants in this process are membrane glycoproteins with asparagine-linked oligosaccharides.  相似文献   

18.
H Baumann  D Doyle 《Cell》1980,21(3):897-907
Goat antibodies directed against a subset of the externally oriented plasma membrane glycoproteins of hepatoma tissue culture (HTC) cells were used to follow the metabolic fate of the membrane antigens and the specifically bound immunoglobulin molecules in this cell type in cultures. Analyses of the immunoprecipitates from cells labeled in situ with neuraminidase and galactose oxidase, followed by reduction with tritiated sodium borohydride, indicate that about 40% of the galactose-labeled plasma membrane glycoproteins are recognized by the antiserum. Fluorescent microscopic analyses of cells treated with fluorescein-conjugated immunoglobulins and analyses of trypsin accessibility indicate that probably all of the antibodies bound to the cell surface are patched and internalized within about 4 hr when the cells are subsequently cultured at 37 degrees C in the presence of rabbit anti-goat immunoglobulins. At the same time, the antigens are also interiorized. Analyses of the cellular localization of the interiorized antigens and antibodies by cell fractionation on Percoll gradients show that the immunoglobulins to the cell surface antigens and the antigens themselves migrate to the same region of the Percoll gradient as lysosomal hydrolases. Although the antibodies bind to the cell surface glycoproteins and bring about patching and interiorization, there is no effect on the degradation of the plasma membrane antigens labeled via the galactose oxidase/borohydride reduction method. Furthermore, the iodinated antibodies directed against these membrane glycoproteins behave in their turnover properties like membrane antigens; the cell-bound specific immunoglobulins have the same half-life as the membrane glycoproteins. When the cells that had been reacted with the goat antibodies to membrane glycoprotein were cultured in the presence of rabbit anti-goat immunoglobulins, degradation of the former antibodies was effectively decreased. Similar results were obtained with concanavalin A and antibodies directed against this plant lectin.  相似文献   

19.
A Tyr to Cys mutation at amino acid position 723 in the cytoplasmic domain of the simian immunodeficiency virus (SIV) transmembrane (TM) molecule has been shown to increase expression of envelope glycoproteins on the surface of infected cells. Here we show that Tyr- 723 contributes to a sorting signal that directs the rapid endocytosis of viral glycoproteins from the plasma membrane via coated pits. On cells infected by SIVs with a Tyr at position 723, envelope glycoproteins were transiently expressed on the cell surface and then rapidly endocytosed. Similar findings were noted for envelope molecules expressed in the absence of other viral proteins. Immunoelectron microscopy demonstrated that these molecules were localized in patches on the cell surface and were frequently associated with coated pits. In contrast, envelope glycoproteins containing a Y723C mutation were diffusely distributed over the entire plasma membrane. To determine if an internalization signal was present in the SIV TM, chimeric molecules were constructed that contained the CD4 external and membrane spanning domains and a SIV TM cytoplasmic tail with a Tyr or other amino acids at SIV position 723. In Hela cells stably expressing these molecules, chimeras with a Tyr-723 were rapidly endocytosed, while chimeras containing other amino acids at position 723, including a Phe, were internalized at rates only slightly faster than a CD4 molecule that lacked a cytoplasmic domain. In addition, the biological effects of the internalization signal were evaluated in infectious viruses. A mutation that disrupted the signal and as a result, increased the level of viral envelope glycoprotein on infected cells, was associated with accelerated infection kinetics and increased cell fusion during viral replication. These results demonstrate that a Tyr-dependent motif in the SIV TM cytoplasmic domain can function as an internalization signal that can modulate expression of the viral envelope molecules on the cell surface and affect the biological properties of infectious viruses. The conservation of an analogous Tyr in all human and simian immunodeficiency viruses suggests that this signal may be present in other primate lentiviruses and could be important in the pathogenesis of these viruses in vivo.  相似文献   

20.
《The Journal of cell biology》1990,111(6):2909-2921
MDCK cells display fluid-phase transcytosis in both directions across the cell. Transcytosis of cell surface molecules was estimated by electron microscopic analysis of streptavidin-gold-labeled frozen sections of biotinylated cells. Within 3 h, approximately 10% of the surface molecules, biotinylated on the starting membrane domain, were detected on the opposite surface domain irrespective of the direction of transcytosis. This suggests that the transcytosis rates for surface molecules are equal in both directions across the cell as shown previously for fluid-phase markers. A biochemical assay was established to identify transcytosing glycoproteins in MDCKII-RCAr cells, a ricin- resistant mutant of MDCK. Due to a galactosylation defect, surface glycoproteins of these cells can be labeled efficiently with [3H]galactose. Transcytosis of [3H]galactose-labeled glycoproteins to the opposite membrane domain was detected by surface biotinylation. Detergent-solubilized glycoproteins derivatized with biotin were adsorbed onto streptavidin-agarose and separated by SDS-PAGE. A subset of the cell surface glycoproteins was shown to undergo transcytosis. Transport of these glycoproteins across the cell was time and temperature dependent. By comparative two-dimensional gel analysis, three classes of glycoproteins were defined. Two groups of glycoproteins were found to be transported unidirectionally by transcytosis, one from the apical to the basolateral surface and another from the basolateral to the apical surface. A third group of glycoproteins which has not been described previously, was found to be transported bidirectionally across the cell.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号