首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Sindbis virus can adsorb to chicken embryo fibroblasts in two different ways. "Loosely" bound virus can be washed off the cell with buffers of ionic strength 0.2 or greater, whereas "tightly" bound virus remains attached under these conditions. When Sindbis virus is adsorbed to chick cells at 4 C from a buffer of ionic strength 0.17, 40 to 50% of the adsorbed virus is loosely bound, the remainder tightly bound. Infection of chick cells by Sindbis virus has only small effects on the total amount of virus that can be bound to the cells. However, the amount of Sindbis virus that can be tightly bound declines rapidly beginning at 2 to 3 h after infection. By 7 h after infection, the amount of virus that can be tightly bound is only 10 to 20% of the amount bound to uninfected cells. The adsorption (and penetration) of virus at 37 C is most efficient at an ionic strength of 0.15 to 0.17; at this ionic strength most of the adsorbed virus is tightly bound. At higher ionic strengths the virus adsorbs poorly. At lower ionic strengths most of the virus is loosely bound. A second enveloped virus, vesicular stomatitis virus, has been studied for the purposes of comparison; its adsorption behavior differs from that of Sindbis virus.  相似文献   

2.
Sindbis virus is an alphavirus with a very wide host range, being able to infect many birds and mammals as well as mosquitoes. We have isolated a monoclonal antibody that largely blocks virus binding to mammalian cells. This antibody was found to be directed against the C-terminal domain of the high-affinity laminin receptor, a 67-kDa protein present on the cell surface that binds with high affinity to basement membrane laminin and that is known to be important in development and in tumor invasion. This receptor is believed to be formed from a 295-amino-acid polypeptide that is modified in some unknown way after translation. The primary sequence of this 295-amino-acid protein is highly conserved among mammals. We found the hamster amino acid sequence to be identical to a mouse sequence and to differ at only two amino acids from a human sequence and at two amino acids from a bovine sequence. To verify the importance of the laminin receptor for infection by Sindbis virus, hamster cells were stably transfected with the gene encoding the 295-amino-acid protein under the control of a high-efficiency promoter. Such transfected hamster cells overexpressed the laminin receptor at the cell surface, bound severalfold more Sindbis virions than did the parental cells, and became infected by Sindbis virus with a higher efficiency. In contrast, cells transfected with the antisense gene expressed less laminin receptor on the surface and were less susceptible to the virus. Binding of the virus varied linearly with the amount of laminin receptor on the cell surface, whereas infectivity measured with a plaque assay varied with the 1.4 power of the receptor concentration, suggesting that interaction with more than one receptor aids virus penetration. By these criteria, the laminin receptor functions as the major receptor for Sindbis virus entry into mammalian cells. We also found that the anti-laminin receptor antibody partially blocked Sindbis virus binding to mosquito cells, suggesting that the laminin receptor is conserved in mosquitoes and functions as a Sindbis virus receptor in this host. The wide distribution of this highly conserved receptor may be in part responsible for the broad host range exhibited by the virus, which infects a wide range of mammals and birds as well as its mosquito vector and can infect many different tissues within these hosts.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

3.
Binding of Sindbis Virus to Cell Surface Heparan Sulfate   总被引:13,自引:10,他引:3       下载免费PDF全文
Alphaviruses are arthropod-borne viruses with wide species ranges and diverse tissue tropisms. The cell surface receptors which allow infection of so many different species and cell types are still incompletely characterized. We show here that the widely expressed glycosaminoglycan heparan sulfate can participate in the binding of Sindbis virus to cells. Enzymatic removal of heparan sulfate or the use of heparan sulfate-deficient cells led to a large reduction in virus binding. Sindbis virus bound to immobilized heparin, and this interaction was blocked by neutralizing antibodies against the viral E2 glycoprotein. Further experiments showed that a high degree of sulfation was critical for the ability of heparin to bind Sindbis virus. However, Sindbis virus was still able to infect and replicate on cells which were completely deficient in heparan sulfate, indicating that additional receptors must be involved. Cell surface binding of another alphavirus, Ross River virus, was found to be independent of heparan sulfate.  相似文献   

4.
The appearance of Sindbis virus-envelope glycoproteins in the surfaces of chicken embryo fibroblasts was studied by an indirect labeling technique. This technique involved treating infected cells sequentially with rabbit immunoglobulin G (IgG) specific for Sindbis virus followed by hemocyanin-conjugated goat (anti-rabbit IgG) IgG; surface replicas of these cells were then prepared and examined in the electron microscope. As early as 2 h after infection (and at least 1 h before mature virions were released), newly synthesized virus-envelope glycoproteins were detected at the cell surface. By 3 h after infection, cell surface membranes were extensively modified by the insertion of the Sindbis glycoproteins. When infected cells were prefixed with glutaraldehyde before labeling, the glycoproteins were distributed fairly evenly over the cell surface, although a slight clustering was observed on cells labeled early in infection. However, no evidence for large-scale clustering of virus glycoproteins corresponding to patches of budding virus was observed. Similar results were found with unfixed cells labeled at 4 C. However, when unfixed cells were labeled at 37 C, the glycoproteins were shown to be in discrete clusters, demonstrating that these glycoprotein antigens can diffuse laterally through the cell membrane at this temperature.  相似文献   

5.
Cells infected with wild-type Sindbis virus contain at least two forms of mRNA, 26S and 49S RNA. Sindbis 26S RNA (molecular weight 1.6 x 10(6)) constitutes 90% by weight of the mRNA in infected cells, and is thought to specify the structural proteins of the virus. Sindbis 49S RNA, the viral genome (molecular weight 4.3 x 10(6)), constitutes approximately 10% of the mRNA in infected cells and is thought to supply the remaining viral functions. In cells infected with ts2, a temperature-sensitive mutant of Sindbis virus, the messenger forms also include a third species of RNA with a sedimentation coefficient of 33S and an apparent molecular weight of 2.3 x 10(6). Hybridization-competition experiments showed that 90% of the base sequences in 33S RNA from these cells are also present in 26S RNA. Sindbis 33S RNA was also isolated from cells infected with wild-type virus. After reaction with formaldehyde, this species of 33S RNA appeared to be completely converted to 26S RNA. These results indicate that 33S RNA isolated from cells infected with either wild-type Sindbis or ts2 is not a unique and separate form of Sindbis RNA.  相似文献   

6.
The carbohydrate content of Sindbis virus was determined by gas chromatographic analysis. The two viral glycoproteins were found to be approximately 8% carbohydrate by weight. Mannose is the sugar present in the largest amount. Smaller amounts of glucosamine, galactose, sialic acid, and fucose were also detected. Each of the two viral glycoproteins appears to contain two structurally unrelated oligosaccharides. Two of the three Sindbis-specific glycoproteins found in infected chick cells were shown to contain short, unfinished oligosaccharides.  相似文献   

7.
The amino acid sequence of the membrane glycoprotein of Sindbis virus is specified by the viral genome, but it has not been determined whether the carbohydrate portion of this molecule is specified by the cell or by the virus. We have examined two of the enzyme activities which catalyze transfer of monosaccharides to glycoprotein (sialyl and fucosyl transferases). Comparison of particulate enzyme preparations from infected and uninfected cells showed no difference in either the specific activity or acceptor specificity of these enzymes. This is impressive in view of the fact that the Sindbis membrane glycoprotein is the only glycoprotein synthesized in the infected cell. It was also determined that sialyl transferase from uninfected cells is capable of transferring ((3)H) sialic acid to acceptor prepared from Sindbis membrane glycoprotein. These results imply that at least some of the carbohydrate of the virus glycoprotein can arise by host modification.  相似文献   

8.
Lowering the NaCl concentration of the medium inhibits the release of Sindbis virus from infected chicks cells at a stage after the nucleocapsids have bound to the membranes of the infected cells. The failure of trypsin treatment to release the inhibited virus and the ratio of the proteins in the inhibited cells make it seem likely that the inhibited virus is all intracellular. Experiments using antisera specific for E1 and E2, the envelope glycoproteins of Sindbis, suggest that the inhibitory effect of low-salt medium is mediated through an effect on E2. Lactoperoxidase radioiodination experiments indicate that, even when cleaved from PE2, E2 is not exposed on the surface of low-NaCl-treated chick cells.  相似文献   

9.
Test of Con A induced cell agglutination, method of binding cells to Con A coated nylon fibres and modified procedure of cell-to-cell binding were used in the investigation of architectural surface changes in normal and polyoma virus transformed hamster cells infected with influenza virus. In both cell types influenza virus infection caused 1) increase in fixation resistant Con A agglutination, 2) decrease in the level of surface membrane fluidity and cell plasticity. It has postulated that influenza virus infection results in stabilization of the cell surface architecture. These changes are amplified by polyoma virus transformation. Con A acts in this system, as an indicator rather than as a modifier of architectural changes.  相似文献   

10.
11.
12.
The interrelationship of viral ribonucleic acid (RNA) and protein synthesis in cells infected by Sindbis virus was investigated. When cultures were treated with puromycin early in the course of infection, the synthesis of interjacent RNA (26S) was preferentially inhibited. A similar result was obtained by shifting cells infected by one temperature-sensitive mutant defective in RNA synthesis from the permissive (29 C) to the nonpermissive (41.5 C) temperature. Under both conditions, the viral RNA produced appeared to be fully active biologically. Once underway, the synthesis of viral RNA in wild-type Sindbis infections did not require concomitant protein synthesis.  相似文献   

13.
CELLS transformed by the DNA tumour viruses, polyoma virus and SV40, are agglutinated by lectins such as wheat germ agglutinin1, concanavalin A (Con A)2 and soybean agglutinin3. Agglutination in these cases presumably reflects changes in the cell surface related to the transformed properties of the cell; studies with a temperature-dependent mutant of polyoma virus has shown that cell surface changes are controlled by viral genes4. Here we describe experiments in which we investigated the agglutinability of cells transformed by RNA tumour viruses. One recent report had suggested that cells transformed by RNA tumour viruses were not specifically agglutinated5, whereas a second more recent report claimed the specific agglutination of cells transformed by RSV6. We find that transformed rat, mouse and cat cells that replicate the sarcoma-leukaemia virus complex of murine (MSV) and feline (FeSV) origin are strongly agglutinated by Con A, but mouse and human cells that replicate the murine and feline leukaemia virus components alone are not agglutinated. The ability to agglutinate is rapidly acquired by normal mouse cells on infection with the murine sarcoma virus at a rate that parallels virus replication. In contrast to the results obtained with cells producing virus, non-virus-producing transformed hamster and mouse cells that synthesize virus-specific RNA are either not agglutinated or are agglutinated to a lesser degree. These results suggest that the cell surface alterations responsible for agglutination are not necessarily associated with the transformed state of the cell, but rather with the possession of sarcoma virus-specific information.  相似文献   

14.
Aedes albopictus (mosquito) cells persistently infected with Sindbis virus for a period of 6 months release into the medium a low-molecular-weight material capable of specifically reducing the yields of Sindbis virus during the "acute phase" of infection in mosquito cells. The antiviral activity was produced in detectable levels at 3 days after infection, and its concentration in the extracellular medium increased thereafter. The antiviral activity was inactivated by treatment with the enzyme protease K and heat. It was not activated by treatment with antibody prepared against extracts of Sindbis virus-infected BHK-21 cells. The antiviral activity differs from interferon produced by vertebrate cells in that it is virus specific as well as cell specific.  相似文献   

15.
We describe the use of herpesvirus promoters to regulate the expression of a Sindbis virus replicon (SINrep/LacZ). We isolated cell lines that contain the cDNA of SINrep/LacZ under the control of a promoter from a herpesvirus early gene which requires regulatory proteins encoded by immediate-early genes for expression. Wild-type Sindbis virus and replicons derived from this virus cause death of most vertebrate cells, but the cells discussed here grew normally and expressed the replicon and β-galactosidase only after infection with a herpesvirus. Vero cell lines in which the expression of SINrep/LacZ was regulated by the herpes simplex virus type 1 (HSV-1) infected-cell protein 8 promoter were generated. One Vero cell line (V3-45N) contained, in addition to the SINrep/LacZ cDNA, a Sindbis virus-defective helper cDNA which provides the structural proteins for packaging the replicon. Infection of V3-45N cells with HSV-1 resulted in the production of packaged SINrep/LacZ replicons. HSV-1 induction of the Sindbis virus replicon and packaging and spread of the replicon led to enhanced expression of the reporter gene, suggesting that this type of cell could be used to develop sensitive assays to detect herpesviruses. We also isolated a mink lung cell line that was transformed with SINrep/LacZ cDNA under the control of the promoter from the human cytomegalovirus (HCMV) early gene UL45. HCMV carries out an abortive infection in mink lung cells, but it was able to induce the SINrep/LacZ replicon. These results, and those obtained with an HSV-1 mutant, demonstrate that this type of signal amplification system could be valuable for detecting herpesviruses for which a permissive cell culture system is not available.  相似文献   

16.
Whereas defective interfering particles of Sindbis virus are readily produced in BHK-21 cells or chicken embryo fibroblasts by the techniques of serial undiluted passage, similar methods failed to generate such particles in Aedes albopictus cell cultures. In addition, Sindbis virus stocks produced in BHK-21 cells or chicken embryo fibroblasts and which contained defective interfering particles, when tested in A. albopictus cells, failed (i) to interfere with the replication of standard Sindbis virus and (ii) to change the pattern of intracellular viral RNA synthesis from that produced by infection with standard Sindbis virus alone. We conclude that defective interfering particles of Sindbis virus generated in chicken or hamster cells are silent or inert in mosquito cells.  相似文献   

17.
Proteins specified by Sindbis virus in chick embryo fibroblast cells   总被引:2,自引:0,他引:2  
Large amounts of high molecular weight polypeptides were detected in “aged” chick embryo fibroblast cells infected with Sindbis virus. These polypeptides were shown to be virus specific by several criteria. At least some of the above polypeptides were shown to be precursors to smaller viral structural proteins by a pulse-chase experiment.  相似文献   

18.
Jan JT  Griffin DE 《Journal of virology》1999,73(12):10296-10302
Sindbis virus (SV) is an alphavirus that causes encephalitis in mice and can lead to the apoptotic death of infected cells. To determine the step in virus replication during which apoptosis is triggered, we used UV-inactivated SV, chemicals that block virus fusion or protein synthesis, and cells that do and do not express heparan sulfate, the initial binding molecule for SV infection of many cells. In initial experiments, UV-inactivated neuroadapted SV (NSV) induced apoptosis in Chinese hamster ovary (CHO) cells lacking heparan sulfate in the presence of cycloheximide. When fusion of prebound UV-inactivated NSV was rapidly induced at the plasma membrane by exposure to acidic pH, apoptosis was induced in CHO cells with or without heparan sulfate in the presence or absence of cycloheximide in a virus dose-dependent manner. In N18 neuroblastoma cells, the relative virulence of the virus strain was an important determinant of apoptosis induced by UV-inactivated SV. Treatment of N18 cells with monensin to prevent endosomal acidification an hour before, but not 2 h after, exposure to live NSV blocked the induction of cell death, as did treatment with NH(4)Cl or bafilomycin A1. These studies indicate that SV can induce apoptosis at the time of fusion with the cell membrane and that virus replication is not required.  相似文献   

19.
Phospholipid Synthesis in Sindbis Virus-Infected Cells   总被引:5,自引:5,他引:0       下载免费PDF全文
We investigated the metabolic requirements for the decrease in phospholipid synthesis previously observed by Pfefferkorn and Hunter in primary cultures of chick embryo fibroblasts infected with Sindbis virus. The incorporation of (32)PO(4) into all classes of phospholipids was found to decline at the same rate and to the same extent; thus, incorporation of (14)C-choline into acid-precipitable form provided a convenient measure of phospholipid synthesis that was used in subsequent experiments. Experiments with temperature-sensitive mutants suggested that some viral ribonucleic acid (RNA) synthesis was essential for the inhibition of choline incorporation, but that functional viral structural proteins were not required. The reduction in phospholipid synthesis was probably a secondary effect of infection resulting from viral inhibition of the cellular RNA and protein synthesis. All three inhibitory effects required about the same amount of viral RNA synthesis; the inhibition of host RNA and protein synthesis began sooner than the decline in phospholipid synthesis; and both actinomycin D and cycloheximide inhibited (14)C-choline incorporation in uninfected cells. In contrast, incorporation of (14)C-choline into BHK-21 cells was not decreased by 10 hr of exposure to actinomycin D and declined only slowly after cycloheximide treatment. Growth of Sindbis virus in BHK cells did not cause the marked stimulation of phospholipid synthesis seen in picornavirus infections of other mammalian cells; however, inhibition was seen only late in infection.  相似文献   

20.
Three Aedes albopictus (mosquito) cell lines persistently infected with Sindbis virus excluded the replication of both homologous (various strains of Sindbis) and heterologous (Aura, Semliki Forest, and Ross River) alphaviruses. In contrast, an unrelated flavivirus, yellow fever virus, replicated equally well in uninfected and persistently infected cells of each line. Sindbis virus and Semliki Forest virus are among the most distantly related alphaviruses, and our results thus indicate that mosquito cells persistently infected with Sindbis virus are broadly able to exclude other alphaviruses but that exclusion is restricted to members of the alphavirus genus. Superinfection exclusion occurred to the same extent in three biologically distinct cell clones, indicating that the expression of superinfection exclusion is conserved among A. albopictus cell types. Superinfection of persistently infected C7-10 cells, which show a severe cytopathic effect during primary Sindbis virus infection, by homologous virus does not produce cytopathology, consistent with the idea that cytopathology requires significant levels of viral replication. A possible model for the molecular basis of superinfection exclusion, which suggests a central role for the alphavirus trans-acting protease that processes the nonstructural proteins, is discussed in light of these results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号