首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Measurement of fractional lipogenesis by condensation polymerization methods assumes constant enrichment of lipogenic acetyl-CoA in all hepatocytes. mass isotopomer distribution analysis (MIDA) and isotopomer spectral analysis (ISA) represent such methods and are based on the combinatorial analyses of mass isotopomer distributions (MIDs) of fatty acids and sterols. We previously showed that the concentration and enrichment of [13C]acetate decrease markedly across the dog liver because of the simultaneous uptake and production of acetate. To test for zonation of the enrichment of lipogenic acetyl-CoA, conscious dogs, prefitted with transhepatic catheters, were infused with glucose and [1,2-13C2]acetate in a branch of the portal vein. Analyses of MIDs of fatty acids and sterols isolated from liver, bile, and plasma very low density lipoprotein by a variant of ISA designed to detect gradients in precursor enrichment revealed marked zonation of enrichment of lipogenic acetyl-CoA. As control experiments where no zonation of acetyl-CoA enrichment would be expected, isolated rat livers were perfused with 10 mm [1,2-13C2]acetate. The ISA analyses of MIDs of fatty acids and sterols from liver and bile still revealed a zonation of acetyl-CoA enrichment. We conclude that zonation of hepatic acetyl-CoA enrichment occurs under a variety of animal models and physiological conditions. Failure to consider gradients of precursor enrichment can lead to underestimations of fractional lipogenesis calculated from the mass isotopomer distributions. The degree of such underestimation was modeled in vitro, and the data are reported in the companion paper (Bederman, I. R., Kasumov, T., Reszko, A. E., David, F., Brunengraber, H., and Kelleher, J. K. (2004) J. Biol. Chem. 279, 43217-43226).  相似文献   

2.
Steroid intermediates of the cholesterol synthesis pathway are characterized by rapid turnover rates relative to cholesterol due to their small pool size. Because the small pools will label rapidly, these intermediates may provide valuable information about the incorporation of isotopes in de novo synthesis of cholesterol and related compounds. The labeling of cholesterol synthesis intermediates from [1-(13)C]acetate was investigated in human subjects and in liver cell models by means of isotopomer spectral analysis (ISA). In human subjects, infusing [1-(13)C]acetate into the duodenum for 12 h demonstrated that approximately 50% of the plasma lathosterol pool was derived from de novo synthesis during this interval. The lipogenic acetyl-CoA precursor pool enrichment reached a constant value within 3 h of the start of the infusion. In vitro studies indicated that liver cell models decrease de novo lathosterol synthesis when cholesterol synthesis is inhibited by statins or cholesterol-containing serum. We propose a new calculation to increase the accuracy and precision of cholesterol synthesis estimates in vivo combining the ISA of lathosterol and cholesterol.  相似文献   

3.
Starved rats were infused intragastrically via indwelling duodenal cannulae with glucose at a rate of 30 mg/min/kg. The infusate contained [U-13C]glucose at an enrichment of 32 or 17%. At the end of the infusion, after 160 min, glucose and lactate were isolated from arterial and portal blood and from liver, and liver glycogen was isolated and hydrolyzed to glucose. The enrichment in glucose and lactate and the isotopomer distribution in glucose of masses from 180 to 186 were determined by gas chromatography-mass spectrometry (GC-MS). From analysis of these data we determined (a) gluconeogenesis proceeds at half the basal rate in the presence of a large infused glucose load, (b) one-quarter of the hepatic pyruvate pool is derived from nonglucose carbon, (c) half of the labeled molecules in liver glycogen are of mass 186 from the infused glucose and half are of masses 181-183, (d) the contribution of the indirect path from pyruvate when corrected for synthesis from unlabeled pyruvate ranges from 55 to 65%, (e) the rate of pyruvate carboxylase averages 90% that of citrate synthase, and (f) the rate of exchange of oxaloacetate with fumarate is about three times the rate of flux in the Krebs cycle (four times in the "forward" direction), and the enrichment in carbon 1 of oxaloacetate was 2.3 times that in carbon 4. In the Appendix a method to obtain the isotopomer distribution of newly formed glucose and glycogen glucose is described. An algorithm to correct for the contribution of natural abundance of 13C and the presence of 12C in commercial [U-13C]glucose is presented. A novel mathematical analysis to obtain the parameters of the Krebs cycle from the isotopomer distribution is developed in the Appendix. Equations to calculate the relative rates of pyruvate carboxylase (y), and the equilibration of oxaloacetate with fumarate from the isotopomer distribution are derived. Mass isotopomer analysis provides a novel and powerful tool for the study of carbohydrate metabolism and the operation of the Krebs cycle.  相似文献   

4.
Fructose and glutamate metabolism was monitored in cell suspensions of streptomyces parvulus by 13C nuclear magnetic resonance. The experiments were performed for cells grown with various 13C sources in a growth medium containing D-[U-13C]fructose, L-[13C]glutamate, or L-[U-13C]aspartate and with nonlabeled precursors to compare intracellular pools in S. parvulus cells at different periods of the cell life cycle. The transport of fructose into the cells was biphasic in nature; during rapid transport, mannitol, fructose, and glucose 6-phosphate were accumulated intracellularly, whereas during the passive diffusion of fructose, the intracellular carbohydrate pool comprised mainly trehalose (1,1'-alpha-alpha-D-glucose). The regulation of fructokinase activity by the intracellular intermediates may play an important role in fructose catabolism in S. parvulus. Transaldolase activity in S. parvulus was determined from the 13C nuclear magnetic resonance labeling pattern of trehalose carbons obtained from cells grown in medium containing either L-[U-13C]aspartate or L-[U-13C]glutamate. Only carbons 4, 5, and 6 of the disaccharide were labeled. Isotopomer analysis of the trehalose carbons led us to conclude that the flux through the reverse glycolytic pathway, condensation of glyceraldehyde 3-phosphate with dihydroxyacetone phosphate, makes at best a minor contribution to the 13C-labeled glucose units observed in trehalose. The pentose pathway and transaldolase activity can explain the labeling pattern of 4,5,6-13C3 of trehalose. Moreover, the transfer of the 13C label of L-[U-13C]aspartate into the different isotopomers of trehalose C4, C5, and C6 by the transaldolase activity allowed us to calculate the relative fluxes from oxaloacetate via gluconeogenesis and through the tricarboxylic acid cycle. The ratio of the two fluxes is approximately 1. However, the main carbon source for trehalose synthesis in S. parvulus is fructose and not glutamate or aspartate. The 13C enrichment and isotopomer population, measured by nuclear magnetic resonance and gas chromatography-mass spectrometry, of the actinomycin D peptide ring enabled us to specify the origins of the five amino acids of actinomycin D. Threonine and proline exhibited isotopomer populations similar to that of the extracellular L-[13C]glutamate, indicating that protein catabolism is the origin of their 13C label, whereas the isotopomer populations of sarcosine and N-methylvaline were similar to those of the new intracellular pool of S. parvulus that originated from D-[U-13C]fructose during the production of actinomycin D.  相似文献   

5.
The acetylation of xenobiotics may provide a means for sampling hepatic cytosolic acetyl-CoA in vivo for isotopic studies of lipogenesis. Here, we test the accuracy of acetylated-sulfamethoxazole (SMX) in representing the true precursor pool for hepatic lipogenesis by comparison to a mathematical technique for estimating acetyl-CoA enrichment using the mass isotopomer distribution in circulating lipids. We then go on to measure hepatic fatty acid synthesis in intact rats using stable and radioisotopes. Specific activities and enrichments of SMX-acetate (the latter determined by high performance liquid chromatography-mass spectrometry) were monitored during fasting and refeeding. The dilution rate of hepatic acetyl-CoA relative to infused 13C- or 14C-acetates was 0.158-0.200 mmol/kg body weight/min during fasting, and did not increase significantly in rats refed with intravenous glucose at 25-30 mg/kg/min or refed ad libitum with chow, suggesting little additional input of acetate units. Plasma beta-hydroxybutyrate specific activity was much lower than SMX-acetate. The isotopomeric frequency distributions in circulating very low density lipoprotein (VLDL)-palmitate and VLDL-stearate were used to estimate the enrichment of the true precursor, hepatic acetyl-CoA, from a model based on the binomial distribution. The calculated acetyl-CoA values (7.28 +/- 0.49 molar percent excess (n = 16] based on isotopomeric frequencies were very close to measured SMX-acetate enrichments (7.44 +/- 0.41 molar percent excess (n = 21] and values within individual animals (n = 14) correlated very well (r2 = 0.90, p less than 0.0001). The contribution of VLDL-fatty acid by the de novo lipogenic pathway was similar using the stable isotope approach or radioisotopes (only 1-2% in fasted or intravenous glucose refed rats, 5% in chow refed). Combining fractional de novo lipogenesis values with absolute de novo lipogenesis rates allows estimation of total VLDL-triglyceride synthesis. In conclusion, the xenobiotic acetylation technique provides continuous access to the lipogenic hepatic acetyl-CoA pool in vivo and permits measurement of fatty acid synthesis. Isotopomer ratios in secreted lipids provide another method for estimating true precursor acetyl-CoA enrichments.  相似文献   

6.
The branched chain amino acids (BCAA) valine, leucine and isoleucine have been implicated in a number of diseases including obesity, insulin resistance, and type 2 diabetes mellitus, although the mechanisms are still poorly understood. Adipose tissue plays an important role in BCAA homeostasis by actively metabolizing circulating BCAA. In this work, we have investigated the link between BCAA catabolism and fatty acid synthesis in 3T3-L1 adipocytes using parallel 13C-labeling experiments, mass spectrometry and model-based isotopomer data analysis. Specifically, we performed parallel labeling experiments with four fully 13C-labeled tracers, [U-13C]valine, [U-13C]leucine, [U-13C]isoleucine and [U-13C]glutamine. We measured mass isotopomer distributions of fatty acids and intracellular metabolites by GC-MS and analyzed the data using the isotopomer spectral analysis (ISA) framework. We demonstrate that 3T3-L1 adipocytes accumulate significant amounts of even chain length (C14:0, C16:0 and C18:0) and odd chain length (C15:0 and C17:0) fatty acids under standard cell culture conditions. Using a novel GC-MS method, we demonstrate that propionyl-CoA acts as the primer on fatty acid synthase for the production of odd chain fatty acids. BCAA contributed significantly to the production of all fatty acids. Leucine and isoleucine contributed at least 25% to lipogenic acetyl-CoA pool, and valine and isoleucine contributed 100% to lipogenic propionyl-CoA pool. Our results further suggest that low activity of methylmalonyl-CoA mutase and mass action kinetics of propionyl-CoA on fatty acid synthase result in high rates of odd chain fatty acid synthesis in 3T3-L1 cells. Overall, this work provides important new insights into the connection between BCAA catabolism and fatty acid synthesis in adipocytes and underscores the high capacity of adipocytes for metabolizing BCAA.  相似文献   

7.
We compared kinetic indices of pulmonary surfactant metabolism in premature infants (n = 41) with respect to i) tracer ([1-(13)C1]acetate, [U-(13)C6]glucose, and [1,2,3,4-(13)C4] palmitate), ii) phospholipid (PL) pool (total PLs or disaturated PLs), or iii) instrumentation [gas chromatography/mass spectrometry (GC/MS) or GC-combustion-isotope ratio mass spectometry (GC-C-IRMS)]. Tracer incorporation was measured in PLs extracted from serial tracheal aspirates after a 24 h tracer infusion. The fractional catabolic rate (FCR), representing the total fractional turnover from all sources of surfactant production, was independent of tracer. The fractional synthesis rate of surfactant PL from plasma palmitate was significantly higher than that from palmitate synthesized de novo from acetate, and these two sources of palmitate together accounted for only half of the total surfactant production in preterm infants. [U-(13)C6]glucose showed significant recycling of the (13)C label in intermediary metabolism, distinguishable by GC-MS but not by GC-C-IRMS, resulting in a slower apparent FCR when GC-C-IRMS was used. The extracted PL pool did not affect the surfactant metabolic indices. We suggest that FCR should be used as a primary measure of surfactant turnover kinetics and that tracers labeling both de novo synthesis (acetate and glucose) and preformed pathways (plasma palmitate) can be used to partition the fractional contribution of each pathway to total production.  相似文献   

8.
Little is known about the sources of acetyl-CoA used for the synthesis of malonyl-CoA, a key regulator of mitochondrial fatty acid oxidation in the heart. In perfused rat hearts, we previously showed that malonyl-CoA is labeled from both carbohydrates and fatty acids. This study was aimed at assessing the mechanisms of incorporation of fatty acid carbons into malonyl-CoA. Rat hearts were perfused with glucose, lactate, pyruvate, and a fatty acid (palmitate, oleate or docosanoate). In each experiment, substrates were (13)C-labeled to yield singly or/and doubly labeled acetyl-CoA. The mass isotopomer distribution of malonyl-CoA was compared with that of the acetyl moiety of citrate, which reflects mitochondrial acetyl-CoA. In the presence of labeled glucose or lactate/pyruvate, the (13)C labeling of malonyl-CoA was up to 2-fold lower than that of mitochondrial acetyl-CoA. However, in the presence of a fatty acid labeled in its first acetyl moiety, the (13)C labeling of malonyl-CoA was up to 10-fold higher than that of mitochondrial acetyl-CoA. The labeling of malonyl-CoA and of the acetyl moiety of citrate is compatible with peroxisomal beta-oxidation forming C(12) and C(14) acyl-CoAs and contributing >50% of the fatty acid-derived acetyl groups that end up in malonyl-CoA. This fraction increases with the fatty acid chain length. By supplying acetyl-CoA for malonyl-CoA synthesis, peroxisomal beta-oxidation may participate in the control of mitochondrial fatty acid oxidation in the heart. In addition, this pathway may supply some acyl groups used in protein acylation, which is increasingly recognized as an important regulatory mechanism for many biochemical processes.  相似文献   

9.
Stable isotope methodology has been adapted to the study of lipoprotein turnover in human subjects. Using endogenous [15N]glycine labeling and gas-liquid chromatographic-mass spectrometric analysis, synthesis of apolipoprotein B in very low density lipoprotein (VLDL) was measured directly in five normal and two hyperlipidemic subjects. An isotopic precursor steady state was achieved during the studies by utilizing a priming dose and constant infusion containing [15N]glycine. Measurement of the plateau in 15N enrichment in the urinary hippurate produced during each study was used to estimate the 15N enrichment of the hepatic glycine precursor pool. The range of values for the fractional synthetic rate of VLDL apoB in the normal subjects obtained by this method was 5.9 to 11.5 day-1, with a mean of 9.2 +/- 2.4 (SD). This value agrees with the results of previous investigations which have utilized other methods. The method was also tested in two hypertriglyceridemic subjects and gave fractional synthetic rates of VLDL apoB that were significantly lower than in normals (1.5 and 2.8 day-1). This stable isotope method allows calculation of the fractional synthetic rate of VLDL apoB by maintaining an isotopic steady state throughout the study. It makes possible repeated studies in the same individual since no risk of exposure to radioisotopes is involved.  相似文献   

10.
A method for the quantification of intracellular metabolic flux distributions from steady-state mass balance constraints and from the constraints posed by the measured 13C labeling state of biomass components is presented. Two-dimensional NMR spectroscopy is used to analyze the labeling state of cell protein hydrolysate and cell wall components. No separation of the biomass hydrolysate is required to measure the degree of 13C-13C coupling and the fractional 13C enrichment in various carbon atom positions. A mixture of [1-13C]glucose and uniformly labeled [13C6]glucose is applied to make fractional 13C enrichment data and measurements of the degree of 13C-13C coupling informative with respect to the intracellular flux distribution. Simulation models that calculate the complete isotopomer distribution in biomass components on the basis of isotopomer mapping matrices are used for the estimation of intracellular fluxes by least-squares minimization. The statistical quality of the estimated intracellular flux distributions is assessed by Monte Carlo methods. Principal component analysis is performed on the outcome of the Monte Carlo procedure to identify groups of fluxes that contribute major parts to the total variance in the multiple flux estimations. The methods described are applied to a steady-state culture of a glucoamylase-producing recombinant Aspergillus niger strain.  相似文献   

11.
Little is known about the sources of cytosolic acetyl-CoA used for the synthesis of malonyl-CoA, a key regulator of fatty acid oxidation in the heart. We tested the hypothesis that citrate provides acetyl-CoA for malonyl-CoA synthesis after its mitochondrial efflux and cleavage by cytosolic ATP-citrate lyase. We expanded on a previous study where we characterized citrate release from perfused rat hearts (Vincent G, Comte B, Poirier M, and Des Rosiers C. Citrate release by perfused rat hearts: a window on mitochondrial cataplerosis. Am J Physiol Endocrinol Metab 278: E846-E856, 2000). In the present study, we show that citrate release rates, ranging from 6 to 22 nmol/min, can support a net increase in malonyl-CoA concentrations induced by changes in substrate supply, at most 0.7 nmol/min. In experiments with [U-(13)C](lactate + pyruvate) and [1-(13)C]oleate, we show that the acetyl moiety of malonyl-CoA is derived from both pyruvate and long-chain fatty acids. This (13)C-labeling of malonyl-CoA occurred without any changes in its concentration. Hydroxycitrate, an inhibitor of ATP-citrate lyase, prevents increases in malonyl-CoA concentrations and decreases its labeling from [U-(13)C](lactate + pyruvate). Our data support at least a partial role of citrate in the transfer from the mitochondria to cytosol of acetyl units for malonyl-CoA synthesis. In addition, they provide a dynamic picture of malonyl-CoA metabolism: even when the malonyl-CoA concentration remains constant, there appears to be a constant need to supply acetyl-CoA from various carbon sources, both carbohydrates and lipids, for malonyl-CoA synthesis.  相似文献   

12.
The source of nitrogen (N) for the de novo synthesis of brain glutamate, glutamine and GABA remains controversial. Because leucine is readily transported into the brain and the brain contains high activities of branched-chain aminotransferase (BCAT), we hypothesized that leucine is the predominant N-precursor for brain glutamate synthesis. Conscious and unstressed rats administered with [U-13C] and/or [15N]leucine as additions to the diet were killed at 0-9 h of continuous feeding. Plasma and brain leucine equilibrated rapidly and the brain leucine-N turnover was more than 100%/min. The isotopic dilution of [U-13C]leucine (brain/plasma ratio 0.61 +/- 0.06) and [15N]leucine (0.23 +/- 0.06) differed markedly, suggesting that 15% of cerebral leucine-N turnover derived from proteolysis and 62% from leucine synthesis via reverse transamination. The rate of glutamate synthesis from leucine was 5 micro mol/g/h and at least 50% of glutamate-N originally derived from leucine. The enrichment of [5-15N]glutamine was higher than [15N]ammonia in the brain, indicating glial ammonia generation from leucine via glutamate. The enrichment of [15N]GABA, [15N]aspartate, [15N]glutamate greater than [2-15N]glutamine suggests direct incorporation of leucine-N into both glial and neuronal glutamate. These findings provide a new insight for the role of leucine as N-carrier from the plasma pool and within the cerebral compartments.  相似文献   

13.
Glial uptake of neurotransmitter glutamate (GLU) from the extracellular fluid was studied in vivo in rat brain by (13)C NMR and microdialysis combined with gas-chromatography/mass-spectrometry. Brain GLU C5 was (13)C enriched by intravenous [2,5-(13)C]glucose infusion, followed by [(12)C]glucose infusion to chase (13)C from the small glial GLU pool. This leaves [5-(13)C]GLU mainly in the large neuronal metabolic pool and the vesicular neurotransmitter pool. During the chase, the (13)C enrichment of whole-brain GLU C5 was significantly lower than that of extracellular GLU (GLU(ECF)) derived from exocytosis of vesicular GLU. Glial uptake of neurotransmitter [5-(13)C]GLU(ECF) was monitored in vivo through the formation of [5-(13)C,(15)N]GLN during (15)NH(4)Ac infusion. From the rate of [5-(13)C,(15)N]GLN synthesis (1.7 +/- 0.03 micromol/g/h), the mean (13)C enrichment of extracellular GLU (0.304 +/- 0.011) and the (15)N enrichment of precursor NH(3) (0.87 +/- 0.014), the rate of synthesis of GLN (V'(GLN)), derived from neurotransmitter GLU(ECF), was determined to be 6.4 +/- 0.44 micromol/g/h. Comparison with V(GLN) measured previously by an independent method showed that the neurotransmitter provides 80-90% of the substrate GLU pool for GLN synthesis. Hence, under our experimental conditions, the rate of 6.4 +/- 0.44 micromol/g/h also represents a reasonable estimate for the rate of glial uptake of GLU(ECF), a process that is crucial for protecting the brain from GLU excitotoxicity.  相似文献   

14.
Hyperhomocysteinemia in humans is associated with genetic variants of several enzymes of folate and one-carbon metabolism and deficiencies of folate and vitamins B12 and B6. In each case, hyperhomocysteinemia might be caused by diminished folate-dependent homocysteine remethylation, but this has not been confirmed in vivo. Because published stable isotopic tracer approaches cannot distinguish folate-dependent from folate-independent remethylation, we developed a dual-tracer procedure in which a [U-13C5]-methionine tracer is used in conjunction with a [3-13C]serine tracer to simultaneously measure rates of total and folate-dependent homocysteine remethylation. In young female subjects, plasma [U-13C4]homocysteine enrichment, a surrogate measure of intracellular [U-13C5]methionine enrichment, reached approximately 90% of the plasma [U-13C5]methionine enrichment. Methionine-methyl and -carboxyl group fluxes were in the range of previous reports (approximately 25 and approximately 17 micromol.kg(-1).h(-1), respectively). However, the rate of overall homocysteine remethylation (approximately 8 micromol.kg(-1).h(-1)) was twice that of previous reports, which suggests a larger role for homocysteine remethylation in methionine metabolism than previously thought. By use of estimates of intracellular [3-13C]serine enrichment based on a conservative correction of plasma [3-13C]serine enrichment, serine was calculated to contribute approximately 100% of the methyl groups used for total body homocysteine remethylation under the conditions of this protocol. This contribution represented only a small fraction (approximately 2.8%) of total serine flux. Our dual-tracer procedure is well suited to measure the effects of nutrient deficiencies, genetic polymorphisms, and other metabolic perturbations on homocysteine synthesis and total and folate-dependent homocysteine remethylation.  相似文献   

15.
Biosynthetic studies of the glycopeptide teicoplanin by (1)H and (13)C NMR   总被引:1,自引:0,他引:1  
The biosynthesis of the glycopeptide antibiotic teicoplanin was studied by growing a teicoplanin producing strain of Actinoplanes teichomyceticus (ATCC 31121) on glucose containing either 34.0% [1-(13)C]glucose or 9.7% [U-(13)C]glucose. The fractional enrichment pattern of teicoplanin produced in the medium containing [1-(13)C]glucose was obtained from a one-dimensional (13)C spectrum. The enrichment pattern showed characteristic peaks indicating that amino acids 3 and 7 are derived from acetate, whereas amino acids 1, 2, 4, 5, and 6 are derived from tyrosine. Multiplet structures in heteronuclear single quantum coherence spectra of teicoplanin produced in the medium containing [U-(13)C]glucose showed characteristic coupling patterns supporting these results. Fractional enrichment patterns and multiplet structures of the three sugars in teicoplanin showed that about 50% of the sugars have the same labeling pattern as the glucose substrate whereas the rest have a labeling pattern showing that they are reassembled, probably from precursors in the primary metabolism.  相似文献   

16.
Immune cell functions can be evaluated in vivo by measuring their specific protein fractional synthesis rates (FSR). Using stable isotope dilution techniques, we describe a new method allowing simultaneous in vivo assessment of FSR in two leukocyte populations in healthy human subjects, using small blood samples. Peripheral blood mononuclear cell (PBMC) and polymorphonuclear neutrophil (PMN) FSR were measured during primed continuous intravenous infusion of L-[1-13C]leucine. Immune cells from 6 ml of whole blood were isolated by density gradient centrifugation. In a first study, we calculated the FSR using plasma [13C]leucine or -[13C]ketoisocaproate (KIC) enrichments as precursor pools. In a second study, we compared protein FSR in leukocytes, using enrichments of either intracellular or plasma free [13C]leucine as immediate precursor pools. The present approach showed a steady-state enrichment of plasma and circulating immune cell free [13C]leucine precursor pools. The linearity of labeled amino acid incorporation rate within mixed PBMC and PMN proteins also was verified. Postabsorptive protein FSR was 4.09 ± 0.39%/day in PBMC and 1.44 ± 0.08%/day in PMN when plasma [13C]KIC was the precursor pool. The difference between PBMC and PMN FSR was statistically significant, whatever the precursor pool used, suggesting large differences in their synthetic activities and functions. Use of the plasma [13C]KIC pool led to an underestimation of leukocyte FSR compared with the intracellular pool (PBMC: 6.04 ± 0.94%/day; PMN: 2.98 ± 0.30%/day). Hence, the intracellular free amino acid pool must be used as precursor to obtain reliable results. In conclusion, it is possible to assess immune cell metabolism in vivo in humans by using small blood samples to directly indicate their metabolic activity in various clinical situations and in response to regulating factors. peripheral blood mononuclear cells; polymorphonuclear neutrophils; protein metabolism; stable isotopes; leucine  相似文献   

17.
We previously reported that glutamine was a major source of carbon for de novo fatty acid synthesis in a brown adipocyte cell line. The pathway for fatty acid synthesis from glutamine may follow either of two distinct pathways after it enters the citric acid cycle. The glutaminolysis pathway follows the citric acid cycle, whereas the reductive carboxylation pathway travels in reverse of the citric acid cycle from alpha-ketoglutarate to citrate. To quantify fluxes in these pathways we incubated brown adipocyte cells in [U-(13)C]glutamine or [5-(13)C]glutamine and analyzed the mass isotopomer distribution of key metabolites using models that fit the isotopomer distribution to fluxes. We also investigated inhibitors of NADP-dependent isocitrate dehydrogenase and mitochondrial citrate export. The results indicated that one third of glutamine entering the citric acid cycle travels to citrate via reductive carboxylation while the remainder is oxidized through succinate. The reductive carboxylation flux accounted for 90% of all flux of glutamine to lipid. The inhibitor studies were compatible with reductive carboxylation flux through mitochondrial isocitrate dehydrogenase. Total cell citrate and alpha-ketoglutarate were near isotopic equilibrium as expected if rapid cycling exists between these compounds involving the mitochondrial membrane NAD/NADP transhydrogenase. Taken together, these studies demonstrate a new role for glutamine as a lipogenic precursor and propose an alternative to the glutaminolysis pathway where flux of glutamine to lipogenic acetyl-CoA occurs via reductive carboxylation. These findings were enabled by a new modeling tool and software implementation (Metran) for global flux estimation.  相似文献   

18.
Experimental determinations of glucose carbon recycling using 14C or 13C glucose tracer often underestimate true Cori cycle activity because of dilution and exchange of isotope tracer through the tricarboxylic acid (TCA) cycle. The term glucose isotope recycling therefore is used to distinguish recycling of isotope from recycling of glucose carbon, the actual quantity of circulating glucose recycled. Recently, per-labeled glucose ([U-13C6]glucose) has been used to estimate glucose appearance rate and glucose isotope recycling. Chemical structural information determined by mass isotopomer analysis has been used to correct for dilution of isotope through the TCA cycle. In this report, we present experiments in the study of glucose turnover and recycling using [U-13C6]glucose. Methods of single injection and continuous infusion of [U-13C6]glucose are compared. A formula for the calculation of a dilution factor using TCA cycle parameters is derived. In this study of six rabbits, glucose turnover rate ranged from 3.4 to 8.8 mg/kg/min, and glucose m + 3 mass isotopomer recycling from 7 to 12%. The rate of pyruvate carboxylation (Y) was comparable to that of citrate synthetase, having an average relative flux of 0.89. Applying the correction factor for tracer dilution to the observed mass isotopomer recycling, we determined glucose carbon recycling (or Cori cycle activity) to be 22-35% of hepatic glucose output.  相似文献   

19.
D-2-Hydroxyglutaric aciduria is an inborn error of metabolism first described in 1980. To date, more than 40 patients have been diagnosed with this disease. To identify the metabolic precursor of D-2-hydroxyglutarate (D-2-HG), cultured human lymphoblasts from two patients with D-2-HG aciduria were grown in culture medium supplemented with [U-(13)C(6)]glucose or [(2)H(5)]glutamate. Mass isotopomer distribution measurements of D-2-HG, 2-ketoglutarate (2-KG) and citrate were performed by gas chromatography-mass spectrometry. The mass isotopomer distributions in D-2-HG, 2-KG and citrate, following [U-(13)C(6)]glucose and [(2)H(5)]glutamate incubations, revealed that 2-KG interconverts rapidly to D-2-HG and that D-2-HG is formed within the mitochondria.  相似文献   

20.
Using a tracer–tracee approach, we fed 1-d-old virgin Heliothis virescens U-13C-glucose and analyzed the key labeled fatty acids, (Z)-11-hexadecenoate, hexadecanoate and octadecanoate, known to be intermediates in pheromone biosynthesis, by mass isotopomer distribution analysis. This method allowed determination of enrichment, and fractional (FSR) and absolute (ASR) synthetic rates. As expected, FSRs and ASRs for all three moieties were greater in the scotophase than photophase. However, in whole gland extracts, FSRs and ASRs of (Z)-11-hexadecenoate and hexadecanoate were much lower than those of the major pheromone component, (Z)-11-hexadecenal, determined previously. Since pheromone is made via these acids, we postulated that pheromone was produced directly and very rapidly via a small pool of acyl CoA thioesters of these acids and that the pool of acids we analyzed in our whole gland extract was largely a ‘dead end’ pool of excess acids (i.e., not converted directly to pheromone) stored in glycerolipids. We tested this by fractionating the whole glandular extract and analyzing the glycerolipid fraction. FSRs and ASRs for the two acids in the glycerolipid fraction were similar to those for the whole gland extract, confirming our postulate. Thus, most acetate produced in the pheromone gland is converted rapidly and directly to pheromone, while excess fatty acids are stored in glycerolipids and remain relatively inaccessible for pheromone production, at least over the two periods studied. Precursor enrichment of octadecanoate was substantially lower than that determined for the two 16-carbon acids and pheromone component. This suggests that hexadecanoate is the principal product of the multi-enzyme complex fatty acid synthase in the gland, and that octadecanoate is formed by subsequent chain elongation of hexadecanoate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号