首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
 A PtII complex containing N4 bound neutral 1-methylcytosine (1-MeC), trans–[Pt(NH3)2(1-MeC-N4)2](ClO4)2 (5), has been prepared and characterized by X-ray analysis. The complex contains the rare iminooxo tautomer form of the cytosine nucleobase. PtII binding is through the exocyclic N4 position of the nucleobases, with Pt and the N3 positions in a syn orientation. As a consequence, the proton at N3 is pointing toward the heavy metal, thereby allowing an agostic Pt···HN interaction. Formation of 5 is achieved via oxidation of the linkage isomer trans–[Pt(NH3)2(1-MeC-N3)2]2+ (1) to a PtIV species (2), followed by metal migration to N4, and subsequent reduction to PtII. This process is a text-book example for a redox-assisted metal migration at a heterocyclic ligand. The existence of various rotamers of 5 in aqueous solution is evident from 1H NMR spectroscopy. The possible role of these rotamers of the metalated rare tautomer, and in particular of those having Pt and the N3 position in an anti arrangement, with regard to base mispairing is discussed. Received: 27 February 1996 / Accepted: 10 June 1996  相似文献   

2.
 The analogy between H-bonded nucleobase pairs and their metalated analogues is extended to the hemiprotonated pair of 7,9-dimethylguanine (7,9-DimeG) and the Watson-Crick and reversed Watson-Crick pair between 7,9-dimethylguaninium (7,9-DimeGH+) and 1-methylcytosine (1-MeC). The crystal structure analyses of two model compounds, trans–[Pt(CH3NH2)2(7,9-DimeG-N1)2](NO3)2 (1) and trans–[Pt(NH3)2(1-MeC-N3)(7, 9-DimeG-N1)](PF6)2· 2.5 H2O (3a) are reported. Pt binding is through N1 of 7,9-DimeG and N3 of 1-MeC. In solution, 3a exists in a mixture with Watson-Crick and reversed Watson-Crick arrangements of the two bases, depending on solvent, concentration and anions. Received: 16 October 1996 / Accepted: 27 January 1997  相似文献   

3.
 The reaction of the macrocycles 1,4,7-tris (3,5-di-tert-butyl-2-hydroxy-benzyl)-1,4,7-triazacyclononane, L1H3, or 1,4,7-tris(3-tert-butyl-5-methoxy-2-hydroxy-benzyl)-1,4,7-triazacyclononane, L2H3, with Cu(ClO4)2·6H2O in methanol (in the presence of Et3N) affords the green complexes [CuII(L1H)] (1), [CuII(L2H)]·CH3OH (2) and (in the presence of HClO4) [CuII(L1H2)](ClO4) (3) and [CuII(L2H2)] (ClO4) (4). The CuII ions in these complexes are five-coordinate (square-base pyramidal), and each contains a dangling, uncoordinated pendent arm (phenol). Complexes 1 and 2 contain two equatorially coordinated phenolato ligands, whereas in 3 and 4 one of these is protonated, affording a coordinated phenol. Electrochemically, these complexes can be oxidized by one electron, generating the phenoxyl-copper(II) species [CuII(L1H)]+·, [Cu(L2H)]+·, [CuII(L1H2)]2+·, and [CuII(L2H2)]2+·, all of which are EPR-silent. These species are excellent models for the active form of the enzyme galactose oxidase (GO). Their spectroscopic features (UV-VIS, resonance Raman) are very similar to those reported for GO and unambiguously show that the complexes are phenoxyl-copper(II) rather than phenolato-copper(III) species. Received: 10 February 1997 / Accepted: 7 April 1997  相似文献   

4.
Guanine–guanine hydrogen bonding involving the Watson–Crick edge [N(1)H, N(2)H2] of one base and the Hoogsteen edge (N7, O6) of the other is the dominant association pattern in the solid-state structures of two hydrates of 9-ethylguanine (9-EtGH), and in adducts of 9-methylguanine (9-MeGH) with the Zn compounds [ZnCl2(H2O)(9-MeGH-N7)]·(9-MeGH) as well as [ZnCl2(H2O)(9-MeA-N7)]·2(9-MeGH) (9-MeA is 9-methyladenine). The structures of 9-EtGH·2H2O and 9-EtGH·3.5H2O are dominated by polymeric tape structures of the guanine and extended water clusters. In [ZnCl2(H2O)(9-MeGH-N7)]·(9-MeGH) the metalated guanine is involved in hydrogen bonding (GG3 motif) with a free 9-MeGH, which in turn is centrosymmetrically related to itself via hydrogen bonds involving N(2)H2 and N3 (GG4 motif). In [ZnCl2(H2O)(9-MeA-N7)]·2(9-MeGH) the metalated adenine base interacts via its Watson–Crick edge [N1, N(6)H2] with the sugar edge [N(2)H2, N3] of one of the guanine nucleobases of the GG pair. Crystallization of [ZnCl2(H2O)(9-MeA-N7)]·2(9-MeGH) from an aqueous solution containing 9-MeGH, 9-MeA, and ZnCl2 is fully unexpected in that the anticipated preference of Zn(II) for guanine-N7 is not realized and instead coordination to adenine-N7 is observed. The relevance of [ZnCl2(H2O)(9-MeGH-N7)]·(9-MeGH) and [ZnCl2(H2O)(9-MeA-N7)]·2(9-MeGH) for metal-containing nucleic acid triplex structures is discussed. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

5.
The reaction of (diphoe)Pt(CH2CN)(OH) and trans-(PBz3)2Pt(Ph)(OH) with CO2 is reported as producing dimeric, bridged carbonato complexes of the type: P4Pt2(R)2(CO3). The crystal and molecular structure of (PBz3)4Pt2(Ph)2(μ-CO3)·(toluene) is also reported, showing η1, η1 bonding. The reaction is recognized to proceed in a stepwise fashion through bicarbonato intermediates.  相似文献   

6.
Two complexes of composition trans-Pt(1-MeC-N3)(1-MeC-N4)I2 · 2H2O (4) and trans-Pt(1-MeC-N3)(1-MeC-N4)Cl2 (5) are described and characterized by X-ray analysis, which simultaneously contain the preferred aminooxo tautomer I and the rare iminooxo tautomer II of 1-methylcytosine (1-MeC) bonded to the heavy metal, via N3 and N4, respectively. Formation of 4 originates from [Pt(1-MeC-N3)3I]I (2), which likewise has been characterized by X-ray crystal structure analysis. A feasible way of formation of 4, which involves a metal migration process from N3 to N4 occurring at moderately acidic pH, is proposed. It appears to be yet another mechanism of metal migration, different from previously established cases which are redox-assisted and hydroxide-promoted, respectively.  相似文献   

7.
A series of flexible multidentate ligands containing N,P-donor, 2-[N-(diphenylphosphino)methyl]amino-pyridine (L1), 2-[N-bi-(diphenylphosphino) methyl]amino-pyridine (L2), 2-[N-(diphenylphosphino)methyl]amino-7-methyl-1,8-naphthyridine (L3) and 4-[(N-diphenylphosphino)methyl]amino-pyridine) (L4) have been synthesized. The mono- and dinuclear cyclometalated platinum(II) complexes [Pt(C^N^N)L1]ClO4 (HC^N^N = 6-phenyl-2,2′-bipyridine), [Pt2(C^N^N)2L1](ClO4)2, [Pt2(C^N^N)2L2](ClO4)2, [Pt(C^N^N)L3]ClO4 and [Pt2(C^N^N)2L4](ClO4)2 were prepared and their structures determined by X-ray crystal analysis. These complexes exhibit long-lived bright orange emissions ranging from 560 to 610 nm in the solid state at room temperature. In solution, dinuclear complexes have emissions with higher quantum yields than mononuclear complexes. This can be attributed to intramolecular interaction of free functional group with Pt(II) at axial position, resulting in the quenching of phosphorescence for platinum(II) complexes in the 3MLCT excited state.  相似文献   

8.
2,2′-Dipyridylketone (dpk), when acting as a chelating ligand for PdII or PtII, is in slow equilibrium with its corresponding gem-diol form (dpk·H2O). In D2O, equilibrium constants K = (dpk·H2O)/(dpk) change from ca. 0.04 for the free ligand to ca. 3 in the corresponding complexes with cis-[Pt(H2O)2]2+. In solution, species of both ligands can be identified and differentiated by 1H NMR spectroscopy, and in the trinuclear μ-OH bridged PtII complex [Pt3(μ-OH)3(dpk·H2O)2(dpk)](NO3)3·4.5H2O (4), both types of ligands are present simultaneously in a ratio of (dpk·H2O):(dpk) = 2. As demonstrated with a series of PdII complexes containing dpk·H2O and dpk ligands, a straightforward differentiation is possible when DMSO-d6 is used as solvent, because then also the OH protons of dpk·H2O are observable. It is also shown that monocrystalline [PdCl2(dpk·H2O)] (1), when dissolved in DMSO-d6, partially converts, with loss of H2O, to [PdCl2(dpk)].  相似文献   

9.
The use of 4-cyanopyridine (4-CNpy) and 3-cyanopyridine (3-CNpy) as ditopic ligands with 180° and 120° directionalities, respectively, for the construction of molecular architectures with the 90° metal fragments (en)PtII and (en)PdII in water is hampered by the ease with which these ligands undergo hydrolysis to isonicotinamide (4-C(O)NH2py) and nicotinamide (3-C(O)NH2py). As described in this article, out of six X-ray structurally characterized complexes (1-6), only a single one (1) reveal coordination of the unchanged ligand (4-CNpy) to (en)PtII. Nevertheless also the hydrolysis products are of interest in the context of obtaining discrete metallacyclic compounds: Thus, (en)PtII and 4-C(O)NH2py form a hexanuclear complex, [PF6⊂{(en)Pt}6(4-C(O)NHpy)4](NO3)7·10H2O (2), in which the anionic isonicotinamidate ligands function as tridentate, bridging ligands to produce a hybrid between a metallasquare and a 2-floor open box. The resulting cation with a +8 charge accommodates a single hexafluorophosphate anion in its interior. Adjacent cations of 2 pack in such a way as to develop Pt4 chains as typically seen in “platinum blues” and their [PtII]4 precursors.  相似文献   

10.
The 1:1 and 1:2 complexes of cis-(NH3)2PtII with 9-methyladeninium cations, 9-MeAH+, have been prepared and characterized by X-ray crystallography: cis-[(NH3)2Pt(9-MeAH-N7)Cl](NO3)2 (1) and cis-[(NH3)2Pt(9-MeAH-N7)2](NO3)4 · 2HNO3 · 2H2O (2). The pKa values for 9-MeAH+ in H2O are 1.7 in 1 as well as 0.4 (pKa1) and 1.3 (pKa2) for 2, as determined by pD dependent 1H NMR spectroscopy. Compound 2 is special in that it crystallizes with two equivalents of HNO3 per Pt entity. The HNO3 molecules are stacked in rectangular channels provided by cis-(NH3)2PtII units, 9-methyladeninium ligands and nitrate anions, which form a porous network of hydrogen bonds.  相似文献   

11.
New trans-[Pd(sac)2(PPhMe2)(DMSO)]·H2O (Pd) and trans-[Pt(sac)2(PPhMe2)2]·H2O (Pt) complexes (sac = saccharinate and PPhMe2 = dimethylphenylphosphine) were synthesized and characterized by elemental analysis, IR, NMR, ESI-MS spectral analyses and X-ray diffraction. The complexes were evaluated for their in vitro cytotoxicity against breast (MCF-7), colon (HCT116) and lung (A549) human cancer cell lines. The ATP viability assay displayed that Pd was biologically inactive, but Pt showed significant anticancer potency on MCF-7 cancer cells, similar to cisplatin. The results suggested that Pt targeted DNA, whereas Pd displayed higher binding affinity towards human serum albumin (HSA). Mechanism of action studies of Pt suggested apoptotic cell death due to significant increase in intracellular ROS (reactive oxygen species) levels, mitochondrial damage and formation of DNA double-strand breaks. Finally, this work represents a new example of potent transplatin anticancer complexes.  相似文献   

12.
Double complex salts [M(NH3)4][M′(Ox)2(H2O)2] · 2H2O (M = Pd, Pt, M′ = Ni, Zn) were synthesized by combination of solutions containing corresponding cations [M(NH3)4]2+ and anions [M′(Ox)2(H2O)2]2−. The salts obtained were characterized by IR spectroscopy, thermal analysis, powder and single crystal X-ray diffraction. The prepared compounds are isostructural and crystallize in the orthorhombic crystal system (space group I222, Z = 2). Thermal decomposition of the salts in helium or hydrogen atmosphere at 200-400 °C results in formation of nano-sized bimetallic powders. Depending on the phase diagram of the respective bimetallic system and temperature conditions, they can be single phase or multiphase products. In particular, thermal decomposition of double complex salts [M(NH3)4][Zn(Ox)2(H2O)2] · 2H2O (M = Pd, Pt) results in formation of PdZn and PtZn intermetallic compounds, correspondingly. Decomposition of [Pd(NH3)4][Ni(Ox)2(H2O)2] · 2H2O affords a disordered solid solution Pd0.5Ni0.5. Disordered Pt0.5Ni0.5 was obtained from [Pt(NH3)4][Ni(Ox)2(H2O)2] · 2H2O in helium atmosphere, while in hydrogen atmosphere - a two-phase mixture of disordered Pt0.5Ni0.5 and ordered PtNi. In all cases crystallite sizes of bimetallic particles varied within 50-250 Å.  相似文献   

13.
 The present model study explores the chemistry of methionine complexes and ternary methionine-guanine adducts formed by trans-[PtCl2(NH3)2] (1) and antitumor trans-[PtCl2(NH3)quinoline] (2) using 1D (1H, 195Pt) and 2D NMR spectroscopy. Compound 2 was substitution inert in reactions with N-acetyl-lmethionine [AcMet(H)]. Reactions of trans-[PtCl(NO3)(NH3)quinoline] (5) ("monoactivated" 2) with AcMetH in water and acetone at various stoichiometries point to Pt(II)-S binding that requires prior activation of the Pt-Cl bond by labile oxygen donors. Trans-[PtCl{AcMet(H)-S}(NH3)quinoline](NO3) (6) and trans-[Pt{AcMet(H)-S}2(NH3)quinoline](NO3)2 (7) were isolated from these mixtures. At high [Cl], AcMet(H) is displaced from 7, giving 6. Frozen stereodynamics in 6 at the thioether-S and slow rotation about the Pt-Nquinoline bond result in four spectroscopically distinguishable diastereomers. 1H NMR spectra of 7 show faster exchange dynamics due to mutual trans-labilization of the sulfur donors. Substitution of chloride in trans-[PtCl(9-EtGua)(NH3)L]NO3 (L=NH3, 3; L=quinoline, 4; 9-EtGua=9-ethylguanine, which mimics the first DNA binding step of 1 and 2) by methionine-sulfur proceeded ca. 2.5 times slower for the quinoline compound. Both reactions, in turn, proved to be ca. 4 times faster than binding of a second nucleobase under analogous conditions. From the resulting mixtures the ternary adducts trans-[Pt(AcMet-S)(9-EtGua-N7)(NH3)L](NO3, Cl) (L=NH3, 8; L=quinoline, 9) were isolated. A species analogous to 9 formed in a rapid reaction between 6 and 5′-guanosine monophosphate (5′-GMP). From NMR data an AMBER-based solution structure of the resulting adduct, trans-[Pt(AcMet-S)(5′-GMP-N7)(NH3)quinoline] (10), was derived. The unusual reactivity along the N7-Pt-S axis in 8–10 resulted in partial release of both 9-EtGua and AcMet at high [Cl]. Possible consequences of the kinetic and structural effects (e.g., trans effect of sulfur, steric demand of quinoline) observed in these systems with respect to the (trans)formation of potential biological cross-links are discussed. Received: 25 May 1998 / Accepted: 6 August 1998  相似文献   

14.
《Inorganica chimica acta》2006,359(9):2879-2887
An investigation of the question of “Is it homogeneous or heterogeneous catalysis?” is reported when using PtII(1,5-COD)X2 (X = halogen, alkyl) precatalysts for the hydrogenation of olefins. Using product studies, kinetic evidence, and Hg0 poisoning experiments, it is shown that PtII(1,5-COD)Cl2 is a precatalyst and must be reduced to Pt0 nanoclusters and bulk metal as the true hydrogenation catalyst. An investigation of the related complex PtII(1,5-COD)(CH3)2 reveals that this complex does not form a hydrogenation catalyst by itself under H2, in agreement with the literature. Kinetic and Hg0 poisoning evidence confirms that PtII(1,5-COD)(CH3)2, too, forms a Pt0 heterogeneous catalyst if other metals (Ir0, Pt0) are used as seeds to initiate the reduction of PtII. A short review of the use of PtII(1,5-COD)Cl2 in hydrosilylation reactions is given, illustrating the continued controversy surrounding the nature of the true catalyst in that literature system.  相似文献   

15.
The synthesis and characterization of several complexes of the composition [{M(terpy)}n(L)](ClO4)m (M = Pt, Pd; L = 1-methylimidazole, 1-methyltetrazole, 1-methyltetrazolate; terpy = 2,2′:6′,2″-terpyridine; n = 1, 2; m = 1, 2, 3) is reported and their applicability in terms of a metal-mediated base pair investigated. Reaction of [M(terpy)(H2O)]2+ with 1-methylimidazole leads to [M(terpy)(1-methylimidazole)](ClO4)2 (1: M = Pt; 2: M = Pd). The analogous reaction of [Pt(terpy)(H2O)]2+ with 1-methyltetrazole leads to the organometallic compound [Pt(terpy)(1-methyltetrazolate)]ClO4 (3) in which the aromatic tetrazole proton has been substituted by the platinum moiety. For both platinum(II) and palladium(II), doubly metalated complexes [{M(terpy)}2(1-methyltetrazolate)](ClO4)3 (4: M = Pt; 5: M = Pd) can also be obtained depending on the reaction conditions. In the latter two compounds, the [M(terpy)]2+ moieties are coordinated via C5 and N4. X-ray crystal structures of 1, 2, and 3 are reported. In addition, DFT calculations have been carried out to determine the energy difference between fully planar [Pd(mterpy)(L)]2+ complexes Ip-IVp (mterpy = 4′-methyl-2,2′:6′,2″-terpyridine; L = 1-methylimidazole-N3 (I), 1-methyl-1,2,4-triazole-N4 (II), 1-methyltetrazole-N3 (III), or 3-methylpyridine-N1 (IV)) and the respective geometry-optimized structures Io-IVo. Whereas this energy difference is larger than 70 kJ mol−1 for compounds I, II, and IV, it amounts to only 0.8 kJ mol−1 for the tetrazole-containing complex III, which is stabilized by two intramolecular C-H?N hydrogen bonds. Of all complexes under investigation, only the terpyridine-metal ion-tetrazole system with N3-coordinated tetrazole appears to be suited for an application in terms of a metal-mediated base pair in a metal-modified oligonucleotide.  相似文献   

16.
The Pd(II) and Pt(II) complexes with triazolopyrimidine C-nucleosides L1 (5,7-dimethyl-3-(2′,3′,5′-tri-O-benzoyl-β-d-ribofuranosyl-s-triazolo)[4,3-a]pyrimidine), L2 (5,7-dimethyl-3-β-d-ribofuranosyl-s-triazolo[4,3-a]pyrimidine) and L3 (5,7-dimethyl[1,5-a]-s-triazolopyrimidine), [Pd(en)(L1)](NO3)2, [Pd(bpy)(L1)](NO3)2, cis-Pd(L3)2Cl2, [Pd2(L3)2Cl4] · H2O, cis-Pd(L2)2Cl2 and [Pt3(L1)2Cl6] were synthesized and characterized by elemental analysis and NMR spectroscopy. The structure of the [Pd2(L3)2Cl4] · H2O complex was established by X-ray crystallography. The two L3 ligands are found in a head to tail orientation, with a Pd?Pd distance of 3.1254(17) Å. L1 coordinates to Pd(II) through N8 and N1 forming polymeric structures. L2 coordinates to Pd(II) through N8 in acidic solutions (0.1 M HCl) forming complexes of cis-geometry. The Pd(II) coordination to L2 does not affect the sugar conformation probably due to the high stability of the C-C glycoside bond.  相似文献   

17.
The interaction of Pt(II)(dppf)-complex, namely [Pt(dppf)(H2O)2]2+ with DNA was investigated by DPV and 1H-NMR techniques. The results showed that the interaction process has been characterized by changes in the electrochemical parameters of both compounds and the formation of a new anodic current peak close to the anodic current peak of the [Pt(dppf)(H2O)2]2+. In addition, the 1H-NMR spectra show that the coordination of Pt(II)(dppf)-complex to dsDNA occurs via N(7) of guanine. Others parameters like pH and ionic strength that affect the interaction process were also investigated.  相似文献   

18.
The copper(II), nickel(II) and silver(I) complexes of the pentadentate 17-membered macrocycle 1, 12, 15-triaza-3, 4:9, 10-dibenzo-5,8-dithiacycloheptadecane (L1) have been prepared as perchlorates and characterized by X-ray crystallography. The N3S2 ligand uses all donor atoms for complexation. The copper coordination is square pyramidal with one sulfur atom in the axial site. Ni(II) displays an octahedral coordination by an interaction with a water molecule. The Ag(I) coordination is best described as a distorted pentagonal bipyramid. In [CuL1]2+ the 1, 4, 7-triazaheptane fragment of L1 is meridionally coordinated, but facially in [NiL1(H2O)]2+ and intermediate in [AgL1](ClO4). Crystal data for [CuL1](ClO4)2: monoclinic, space group P21/n, a = 13.153(8), b = 11.951(5), c = 17.880(8)Å, β = 110.29(4)°, Z = 4, R = 0.086 for 2732 independent reflections with I 2σ(I); [NiL1(H2O)](ClO4)2: monoclinic, P21/a, a = 10.771(2), b= 16.157(2), c = 15.286(2) Å, β =93.08(1)°, Z = 4, R = 0.085 for 1464 independent reflections with I 2σ(I); [AgL1](ClO4): monoclinic, P21/n, a = 12.708(9), b = 9.483(7), c = 19.569(13) Å, β= 103.95(6)°, Z = 4, R = 0.039 for 3600 independent reflections with I 2σ(I).  相似文献   

19.
A novel ternary complex, TbL5L′(ClO4)3·3H2O, two binary complexes, TbL7(ClO4)3·3H2O and TbL′3.5(ClO4)3·4H2O has been synthesized (using diphenyl sulphoxide as the first ligand L, bipyridine as the second ligand L′). Their composition was analysed by element analysis, coordination titration, IR spectra and 1H‐NMR, and the fluorescence emission mechanism, fluorescence intensities and phosphorescence spectra were also investigated by comparison. It was shown that the ternary rare‐earth complex showed stronger fluorescence intensities than the binary rare‐earth complexes in such material. The strongest characteristic fluorescence emission intensity of the ternary system was 8.23 times, 3.58 times as strong as that of the binary systems TbL7(ClO4)3·3H2O and TbL′3.5 (ClO4)3·4H2O, respectively. By fluorescence analysis it was found that both diphenyl sulphoxide and bipyridine could sensitize the fluorescence intensities of rare‐earth ions. In particular, in the ternary rare‐earth complex, introduction of bipyridine was of benefit to the fluorescence properties of Tb(III). Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

20.
A 1:1 complex of mercuric chloride with D-peniccillamine has been isolated and characterised as 2[(μ3-Cl){HgSC(CH3)2CH(NH3)COO}3]·3(μ2-Cl)·2(H3O)·(H2O·Cl)3. The compound crystallises in cubic space group P4132, with a = 18.679(5) Å and Z = 4. The structure, refined to RF = 0.086 for 443 observed Mo-Kα diffractometer data, features a triply bridging chloride ion linking three equivalent [HgSC(CH3)2CH(NH3)COO]+ units [Hg-Cl = 2.37(1) Å, Hg-Cl-Hg′ = 98.5(9)°]. The carboxylate groups of a pair of adjacent penicillamine ligands are strongly linked via a symmetrical O?H?O hydrogen bond of length 2.24(8) Å, and neighboring pyramidal trinuclear [μ3-Cl){HgSC(CH3)2CH(NH3)-COO}3]2+ moieties are further connected by symmetrical chloride bridges [Hg-Cl = 3.06(2) Å; HgClHg′' = 79.6(7)°] to form a three-dimensional network. The voids in the lattice are filled by hydronium ions and novel planar cyclic hydrogen-bonded (H2O·Cl?)3 rings of edge O-H?Cl = 2.46(4) Å.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号