首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The structural properties required for the binding of peptide substrates to the Escherichia coli periplasmic protein involved in oligopeptide transport were surveyed by measuring the ability of different peptides to compete for binding in an equilibrium dialysis assay with the tripeptide Ala-Phe-[3H]Gly. The protein specifically bound oligopeptides and failed to bind amino acids or dipeptides. Acetylation of the peptide amino terminus of (Ala)3 severely impaired binding, whereas esterification of the carboxyl terminus significantly reduced but did not completely eliminate binding. Peptides composed of L-amino acids competed more effectively than did peptides containing D-residues or glycine. Experiments with a series of alanyl peptide homologs demonstrated a decrease in competitive ability with increasing chain length beyond tripeptide. Competition studies with tripeptide homologs indicated that a wide variety of amino acyl side chains were tolerated by the periplasmic protein, but side-chain composition did affect binding. Fluorescence emission data suggested that this periplasmic protein possesses more than one substrate-binding site capable of distinguishing peptides on the basis of amino acyl side chains.  相似文献   

2.
To elucidate the decisive structural factors relevant for dipeptide-carrier interaction, the affinity of short amide and imide derivatives for the intestinal H+/peptide symporter (PEPT1) was investigated by measuring their ability to inhibit Gly-Sar transport in Caco-2 cells. Dipeptides with proline or alanine in the C-terminal position displayed affinity constants (Ki) of 0.15-1.2 mM and 0.08-9.5 mM, respectively. There was no clear relationship between hydrophobicity, size or ionization status of the N-terminal amino acid and the affinity of the dipeptides. However, analyzing the individual peptide bond conformations of Xaa-Pro dipeptides, a striking correlation between the cis/trans ratios (trans contents 24-70%) and the affinity constants was observed. After correcting the Ki values for the incompetent cis isomers, the Ki corr values of most dipeptides were in a small range of 0.1-0.16 mM. This result revealed the decisive role of peptide bond conformation even for a transport protein that is quite promiscuous in substrate translocation. When measuring affinity constants of Xaa-Pro and Xaa-Sar dipeptides, the cis/trans ratios cannot be ignored. Lower affinities of Lys-Pro, Arg-Pro and Pro-Pro indicate that additional molecular factors affect their binding at PEPT1. The Ki values obtained for the corresponding Xaa-Ala dipeptides support this conclusion. Potential substrates or inhibitors of peptide transport were found among Xaa-piperidides and Xaa-thiazolidides. Dipeptides with N-terminal proline displayed a very diverse affinity profile. However, in contrast to current knowledge, several Pro-Xaa dipeptides such as Pro-Leu, Pro-Tyr and Pro-Pro are recognized by PEPT1 with appreciable affinities. Binding seems mainly determined by the hydrophobicity of the C-terminal amino acid and the rigidity of the structure.  相似文献   

3.
Oligopeptide-mediated helix stabilization of peptides in hydrophobic solutions was previously found by NMR and CD spectroscopic studies. The oligopeptide included the hydrophobic amino acids found in its parent peptide and were interposed by relevant basic oracidic amino acids. The strength of the interactions depended on the amino acid sequences. However, no helix-stabilizing effect was seen for the peptides in phosphate buffer solution, because the peptides assumed a random-coil structure. In order to ascertain whether the helix-stabilizing effect of an oligopeptide on its parent peptide could operate in aqueous solution, model peptides EK17 (Ac-AEAAAAEAAAKAAAAKA-NH2) and IFM17 (Ac-AEAAAAEIFMKAAAAKA-NH2) that may assume an alpha-helix in aqueous solutions were synthesized. Interactions were examined between various oligopeptides (EAAAK, KAAAE, EIFMK, KIFME, KIFMK and EYYEE) and EK17 or IFM17 in phosphate buffer and in 80% trifluoroethanol (TFE)-20% H2O solutions by CD spectra. EAAAK had little effect on the secondary structures of EK17 in both buffer and TFE solutions, while KAAAE, which has the reverse amino acid sequence of EAAAK, had a marked helix-destabilizing effect on EK17 in TFE. EIFMK and KIFME were found to stabilize the alpha-helical structure of EK17 in phosphate buffer solutions, whereas KIFMK and EYYEE destabilized the alpha-helical structure of EK17. EIFMK and KIFME had no effect on IFM17, because unexpectedly, IFM17 had appreciable amounts of beta-sheet structure in buffer solution. It was concluded that in order for the helix-stabilizing (1) the model peptide, the alpha-helical conformation of which is to be stabilized, should essentially assume an alpha-helical structure by nature, and (2) the hydrophobicity of the side-chains of the oligopeptide should be high enough for the oligopeptide to perform stable specific side chain-side chain intermolecular hydrophobic interactions with the model peptide.  相似文献   

4.
The peptide transport protein DtpT of Lactococcus lactis was purified and reconstituted into detergent-destabilized liposomes. The kinetics and substrate specificity of the transporter in the proteoliposomal system were determined, using Pro-[(14)C]Ala as a reporter peptide in the presence of various peptides or peptide mimetics. The DtpT protein appears to be specific for di- and tripeptides, with the highest affinities for peptides with at least one hydrophobic residue. The effect of the hydrophobicity, size, or charge of the amino acid was different for the amino- and carboxyl-terminal positions of dipeptides. Free amino acids, omega-amino fatty acid compounds, or peptides with more than three amino acid residues do not interact with DtpT. For high-affinity interaction with DtpT, the peptides need to have free amino and carboxyl termini, amino acids in the L configuration, and trans-peptide bonds. Comparison of the specificity of DtpT with that of the eukaryotic homologues PepT(1) and PepT(2) shows that the bacterial transporter is more restrictive in its substrate recognition.  相似文献   

5.
When mixed ruminal bacteria were incubated with a pancreatic casein hydrolysate and free amino acids of a similar composition, rates of ammonia production were much greater for peptides than for amino acids. The pancreatic digest of casein was then fractionated with 90% isopropyl alcohol. Hydrophobic peptides which dissolved in alcohol contained an abundance of phenolic and aliphatic amino acids, while the hydrophilic peptides which were precipitated by alcohol contained a large proportion of the highly charged amino acids. The Km values of the mixed ruminal bacteria for each fraction were similar (0.88 versus 0.98 g/liter), but the Vmax of the hydrophilic peptides was more than twice that of the hydrophobic peptides (18 versus 39 mg of NH3 per g of bacterial protein per h). Pure cultures of ruminal bacteria had a similar preference for hydrophilic peptides and likewise utilized peptides at a faster rate than free amino acids. Since peptide degradation rates differed greatly, hydrophobicity is likely to influence the composition of amino acids passing unfermented to the lower gut of ruminant animals.  相似文献   

6.
When mixed ruminal bacteria were incubated with a pancreatic casein hydrolysate and free amino acids of a similar composition, rates of ammonia production were much greater for peptides than for amino acids. The pancreatic digest of casein was then fractionated with 90% isopropyl alcohol. Hydrophobic peptides which dissolved in alcohol contained an abundance of phenolic and aliphatic amino acids, while the hydrophilic peptides which were precipitated by alcohol contained a large proportion of the highly charged amino acids. The Km values of the mixed ruminal bacteria for each fraction were similar (0.88 versus 0.98 g/liter), but the Vmax of the hydrophilic peptides was more than twice that of the hydrophobic peptides (18 versus 39 mg of NH3 per g of bacterial protein per h). Pure cultures of ruminal bacteria had a similar preference for hydrophilic peptides and likewise utilized peptides at a faster rate than free amino acids. Since peptide degradation rates differed greatly, hydrophobicity is likely to influence the composition of amino acids passing unfermented to the lower gut of ruminant animals.  相似文献   

7.
The anti-prion protein (PrP) monoclonal antibody T2 has previously been prepared using PrP-knockout mice immunized with mouse recombinant PrP residues 121-231, however its interaction mechanism to PrP antigen has not been cleared. Here we identified and characterized the epitope of T2 antibody. The competitive ELISA with 20-mer synthetic peptides derived from PrP121-231 showed that T2 antibody had no affinity for these peptides. The analysis with deletion mutants of PrP revealed that 10 amino acids in the N terminus and 66 amino acids in the C terminus of PrP121-231 were necessary for reactivity with T2. Two far regions are necessary for complete affinity of the T2 antibody for PrP; either region alone is not sufficient to retain the affinity. The epitope recognized by T2 antibody is discontinuous and conformational. We examined the effect of disulfide bond and salt bridges. Alkylation of cysteine residues in C terminus of PrP121-231, which breaks a disulfide bond and disrupts the structure, had diminished the reactivity. Mutations induced in the PrP121-231 to break the disulfide bond or salt bridges, markedly had reduced the reactivity with T2 antibody. It suggests that T2 antibody recognized the structure maintained by the disulfide bond and salt bridges.  相似文献   

8.
Peptide Utilization by Amino Acid Auxotrophs of Neurospora crassa   总被引:4,自引:2,他引:2       下载免费PDF全文
The ability of auxotrophs of Neurospora crassa to grow on certain tripeptides, despite the presence of excess competing amino acids, suggests it has an oligopeptide transport system. In general, dipeptides did not support growth except in those instances where extracellular hydrolysis occurred, or where the dipeptide appeared to be accumulated by an uptake system which is sensitive to inhibition by free amino acids. Considerable intracellular peptidase activity toward a large number of peptides was demonstrated, including a number of peptides which could not be utilized for growth. The intracellular peptidase activity was shown to be selective for amino acid composition and sequence (N-terminal or C-terminal) within the peptide; glycine-containing peptides were particularly poor substrates for peptidase activity. Only a small amount of extracellular peptidase activity could be detected.  相似文献   

9.
The specificity of casein kinase II has been further defined by analyzing the kinetics of phosphorylation reactions using a number of different synthetic peptides as substrates. The best peptide substrates are those in which multiple acidic amino acids are present on both sides of the phosphorylatable serine or threonine. Acidic residues on the NH2-terminal side of the serine (threonine) greatly enhance the kinetic constants but are not absolutely required. Acidic residues on the COOH-terminal side of the serine (threonine) are absolutely required. One position for which the occupation of an acidic residue is especially critical is the position located 3 residues to the COOH terminus of the phosphate acceptor site, although the presence of an acidic amino acid in the positions that are 4 or 5 residues removed may also provide an appropriate structure that will serve as a substrate for the kinase. Aspartate serves as a better amino acid determinant than glutamate. A relatively short sequence of amino acids surrounding the phosphate acceptor site appears to serve as the basis for the specificity of casein kinase II. The peptides in this study were also assayed with casein kinase I and the casein kinase from the mammary gland so that the specificities of these kinases could be compared to that of casein kinase II.  相似文献   

10.
Analogues of intermediates in the action of pig kidney prolidase   总被引:1,自引:0,他引:1  
A Radzicka  R Wolfenden 《Biochemistry》1991,30(17):4160-4164
Dicarboxylic acids, resembling the collected substrates for the reverse peptide bond forming reaction, were bound several orders of magnitude more tightly than substrates, products, or previously known competitive inhibitors of reactions catalyzed by pig kidney prolidase (EC 3.4.13.9), a dipeptidase that cleaves peptide bonds to the nitrogen atom of proline. Other inhibitors containing a phosphoryl or phosphonyl group in addition to a carboxyl substituent were bound even more tightly, in a manner consistent with their possible resemblance to tetrahedral intermediates in substrate hydrolysis. These included several analogues of phosphoenol pyruvate, of which the most potent was (Z)-3-bromophosphoenolpyruvate (Ki = 4.6 x 10(-9) M). Ki values were found to vary with changing pH in a manner consistent with displacement of a hydroxide ion from the active site.  相似文献   

11.
The proteolytic specificities of two zinc hemorrhagic toxins (Ht-c and Ht-d), isolated from Crotalus atrox venom, were investigated by using the oxidized B chain of bovine insulin and synthetic peptide substrates. The enzymes cleaved the Ala14-Leu15 bond of the insulin B chain most rapidly and the Tyr16-Leu17 slightly more slowly. The His5-Leu6, His10-Leu11, and Gly23-Phe24 bonds were also cleaved but at considerably slower rates. In order to assess the substrate length preferences of the enzymes, peptide analogs of the B chain about the Ala14-Leu15 bond were synthesized ranging in length from four to seven residues. The heptapeptide NH2-Leu-Val-Glu-Ala-Leu-Tyr-Leu-COOH was the best peptide substrate tested with the other peptides having decreasing kcat/Km values with decreasing length. The tetrapeptide NH2-Ala-Leu-Tyr-Leu-COOH was not cleaved by the enzymes. Furthermore, this peptide was shown to serve as a competitive inhibitor of the toxins. The N-acetylated pentapeptides and hexapeptides, synthesized to probe the active site environment of the enzymes, were significantly better substrates than their unacetylated counterparts. The toxins had the highest kcat/Km values for the acetylated peptide Ac-Val-Ala-Leu-Leu-Ala-COOH. The data suggest that the toxins may indeed have extended substrate-binding sites, which may accommodate at least six amino acid residues. The best substrate examined thus far for the toxins is the fluorogenic peptide analog 2-aminobenzoyl-Ala-Gly-Leu-Ala-4-nitrobenzylamide, suggestive of similarities between the toxins and mammalian collagenases as well as thermolysin. Mechanisms for inhibition of the enzymes were investigated using amino acid hydroxamates, chloromethyl esters, phosphoramidon and the peptide NH2-Ala-Leu-Tyr-Leu-COOH. All of these inhibitors had Ki values in the 10(-4) M range.  相似文献   

12.
The beta-adrenergic receptor kinase (beta-ARK) phosphorylates G protein coupled receptors in an agonist-dependent manner. Since the exact sites of receptor phosphorylation by beta-ARK are poorly defined, the identification of substrate amino acids that are critical to phosphorylation by the kinase are also unknown. In this study, a peptide whose sequence is present in a portion of the third intracellular loop region of the human platelet alpha 2-adrenergic receptor is shown to serve as a substrate for beta-ARK. Removal of the negatively charged amino acids surrounding a cluster of serines in this alpha 2-peptide resulted in a complete loss of phosphorylation by the kinase. A family of peptides was synthesized to further study the role of acidic amino acids in peptide substrates of beta-ARK. By kinetic analyses of the phosphorylation reactions, beta-ARK exhibited a marked preference for negatively charged amino acids localized to the NH2-terminal side of a serine or threonine residue. While there were no significant differences between glutamic and aspartic acid residues, serine-containing peptides were 4-fold better substrates than threonine. Comparing a variety of kinases, only rhodopsin kinase and casein kinase II exhibited significant phosphorylation of the acidic peptides. Unlike beta-ARK, RK preferred acid residues localized to the carboxyl-terminal side of the serine. A feature common to beta-ARK and RK was a much greater Km for peptide substrates as compared to that for intact receptor substrates.  相似文献   

13.
Recently the existence of two different Na(+)-coupled oligopeptide transport systems has been described in mammalian cells. These transport systems are distinct from the previously known H(+)/peptide cotransporters PEPT1 and PEPT2, which transport only dipeptides and tripeptides. To date, the only peptide transport system known to exist in the intestine is PEPT1. Here we investigated the expression of the Na(+)-coupled oligopeptide transporters in intestinal cell lines, using the hydrolysis-resistant synthetic oligopeptides deltorphin II and [d-Ala(2),d-Leu(5)]enkephalin (DADLE) as model substrates. Caco-2 cells and CCD841 cells, both representing epithelial cells from human intestinal tract, were able to take up these oligopeptides. Uptake of deltorphin II was mostly Na(+) dependent, with more than 2 Na(+) involved in the uptake process. In contrast, DADLE uptake was only partially Na(+) dependent. The uptake of both peptides was also influenced by H(+) and Cl(-), although to a varying degree. The processes responsible for the uptake of deltorphin II and DADLE could be differentiated not only by their Na(+) dependence but also by their modulation by small peptides. Several dipeptides and tripeptides stimulated deltorphin II uptake but inhibited DADLE uptake. These modulating small peptides were, however, not transportable substrates for the transport systems that mediate deltorphin II or DADLE uptake. These two oligopeptide transport systems were also able to take up several nonopioid oligopeptides, consisting of 9-17 amino acids. This represents the first report on the existence of transport systems in intestinal cells that are distinct from PEPT1 and capable of transporting oligopeptides consisting of five or more amino acids.  相似文献   

14.
For the efficient translocation of organic nitrogen, small peptides of two to three amino acids are posited as an important alternative to amino acids. A new transporter mediating the uptake of di- and tripeptides was isolated from Arabidopsis thaliana by heterologous complementation of a peptide transport-deficient Saccharomyces cerevisiae mutant. AtPTR1 mediated growth of S. cerevisiae cells on different di- and tripeptides and caused sensitivity to the phytotoxin phaseolotoxin. The spectrum of substrates recognized by AtPTR1 was determined in Xenopus laevis oocytes injected with AtPTR1 cRNA under voltage clamp conditions. AtPTR1 not only recognized a broad spectrum of di- and tripeptides, but also substrates lacking a peptide bond. However, amino acids, omega-amino fatty acids or peptides with more than three amino acid residues did not interact with AtPTR1. At pH 5.5 AtPTR1 had an apparent lower affinity (K(0.5) = 416 microm) for Ala-Asp compared with Ala-Ala (K(0.5) = 54 microm) and Ala-Lys (K(0.5) = 112 microm). Transient expression of AtPTR1/GFP fusion proteins in tobacco protoplasts showed that AtPTR1 is localized at the plasma membrane. In addition, transgenic plants expressing the beta-glucuronidase (uidA) gene under control of the AtPTR1 promoter demonstrated expression in the vascular tissue throughout the plant, indicative of a role in long-distance transport of di- and tripeptides.  相似文献   

15.
We sequenced the NH2 terminus of the large and small subunits of the periplasmic hydrogenase from the sulfate-reducing bacterium Desulfovibrio vulgaris (Hildenborough) and found that the small subunit lacks a region of 34 NH4-terminal amino acids coded by the gene for the small subunit (G. Voordouw and S. Brenner, Eur. J. Biochem. 148:515-520, 1985). We suggest that this region constitutes a signal peptide based on comparison with known procaryotic signal peptides.  相似文献   

16.
Photosystem II cores of spinach contain four phosphoproteins (8.3, 32, 34, and 44 kDa). Tryptic digestion of core particles released four phosphopeptides which were purified by affinity chromatography on Fe3+-chelating Sepharose and reverse-phase high pressure liquid chromatography. One peptide, derived from the 8.3-kDa protein, has been found to be the NH2 terminus of the psbH gene product (Michel, H. P., and Bennett, J. (1987) FEBS Lett. 212, 103-108). The other three peptides were found to be blocked at the NH2 terminus. We now report the use of tandem mass spectrometry to obtain the sequence of the three other peptides, to locate the phosphorylated residue, and to identify the blocking group. The three peptides correspond to the NH2 termini of D1, D2, and CPa-2; and each begins with N-acetyl-O-phosphothreonine. Comparison with sequences deduced from cloned genes indicates that D1 and D2 have lost their initiating N-formylmethionyl residues. The result for D1 contradicts the view that translation of D1 begins at the second AUG of the mRNA (Bloom, M., Brot, N., Cohen, B. N., and Weissbach, H. (1986) Methods Enzymol. 118, 309-315) and supports the view that processing of pre-D1 to its mature form involves loss of amino acids from the COOH terminus (Marder, J. B., Goloubinoff, P., and Edelman, M. (1984) J. Biol. Chem. 259, 3900-3908). In contrast, CPa-2 is processed at the NH2 terminus by cleaving off the first 14 amino acids. These results also establish that the NH2 termini of D1, D2, and CPa-2 are exposed to the stromal side of the thylakoids.  相似文献   

17.
Terminase is the enzyme that mediates lambda DNA packaging into the viral prohead. The large subunit of terminase, gpA (641 amino acid residues), has a high-affinity ATPase activity (K(m)=5 microM). To directly identify gpA's ATP-interacting amino acids, holoterminase bearing a His(6)-tag at the C terminus of gpA was UV-crosslinked with 8-N(3)-[alpha-(32)P]ATP. Tryptic peptides from the photolabeled terminase were purified by affinity chromatography and reverse-phase HPLC. Two labeled peptides of gpA were identified. Amino acid sequencing failed to show the tyrosine residue of the first peptide, E(43)SAY(46)QEGR(50), or the lysine of the second peptide, V(80)GYSK(84)MLL(87), indicating that Y(46) and K(84) were the 8-N(3)-ATP-modified amino acids. To investigate their roles in lambda DNA packaging, Y(46) was changed to E, A, and F, and K(84) was changed to E and A. Purified His(6)-tagged terminases with changes at residues 46 and 84 lacked the gpA high-affinity ATPase activity, though the cos cleavage and cohesive end separation activities were near to those of the wild-type enzyme. In virion assembly reactions using virion DNA as a packaging substrate, the mutant terminases showed severe defects. In summary, the results indicate that Y(46) and K(84) are part of the high-affinity ATPase center of gpA, and show that this ATPase activity is involved in the post-cos cleavage stages of lambda DNA packaging.  相似文献   

18.
The purification and functional reconstitution of a five-component oligopeptide ATP-binding cassette transporter with a remarkably wide substrate specificity are described. High-affinity peptide uptake was dependent on liganded substrate-binding protein OppA, which interacts with the translocator OppBCDF with higher affinity than unliganded OppA. Transport screening with combinatorial peptide libraries revealed that (i) the Opp transporter is not selective with respect to amino acid side chains of the transported peptides; (ii) any peptide that can bind to OppA is transported via Opp, including very long peptides up to 35 residues long; and (iii) the binding specificity of OppA largely determines the overall transport selectivity.  相似文献   

19.
The binding affinities of a number of amino-acid and peptide derivatives by the mammalian intestinal peptide transporter PepT1 were investigated, using the Xenopus laevis expression system. A series of blocked amino acids, namely N-acetyl-Phe (Ac-Phe), phe-amide (Phe-NH2), N-acetyl-Phe-amide (Ac-Phe-NH2) and the parent compound Phe, was compared for efficacy in inhibiting the uptake of the peptide [3H]-D-Phe-L-Gln. In an equivalent set of experiments, the blocked peptides Ac-Phe-Tyr, Phe-Tyr-NH2 and Ac-Phe-Tyr-NH2 were compared with the parent compound Phe-Tyr. Comparing amino acids and derivatives, only Ac-Phe was an effective inhibitor of peptide uptake (Ki = 1.81+/- 0.37 mM). Ac-Phe-NH2 had a very weak interaction with PepT1 (Ki = 16.8+/-5.64 mM); neither Phe nor Phe-NH2 interacted with PepT1 with measurable affinity. With the dipeptide and derivatives, unsurprisingly the highest affinity interaction was with Phe-Tyr (Ki = 0.10+/-0.04 mM). The blocked C-terminal peptide Phe-Tyr-NH2 also interacted with PepT1 with a relatively high affinity (Ki = 0.94+/-0.38 mM). Both Ac-Phe-Tyr and Ac-Phe-Tyr-NH2 interacted weakly with PepT1 (Ki = 8.41+/-0.11 and 9.97+/-4.01 mM, respectively). The results suggest that the N-terminus is the primary binding site for both dipeptides and tripeptides. Additional experiments with four stereoisomers of Ala-Ala-Ala support this conclusion, and lead us to propose that a histidine residue is involved in binding the C-terminus of dipeptides. In addition, a substrate binding model for PepT1 is proposed.  相似文献   

20.
A series of truncated atrial natriuretic peptide analogs were examined as a means of defining the structural requirements for receptor occupancy and stimulation of cyclic GMP accumulation in bovine aortic smooth muscle cells. It was determined that deletion of amino acids from the carboxyl and/or amino termini of the peptides diminished their ability to increase cyclic GMP levels. Deletion of amino acids from the carboxyl terminus had the greatest effect, and atrial natriuretic peptide analogs lacking the carboxyl-terminal phenylalanyl-arginyl-tyrosine tripeptide were 100-1000-fold less active than parent compounds in stimulating intracellular cyclic GMP accumulation. In marked contrast to the cyclic GMP effects, deletion of amino- and/or carboxyl-terminal amino acids had only minor effects on the affinity of the peptides for specific smooth muscle cell-associated receptors. Peptide analogs lacking the phenylalanyl-arginyl-tyrosine tripeptide bound to receptors with an affinity only 1.1-5-fold weaker than the parent compounds. Thus, there was no correlation between apparent receptor binding affinity of atrial natriuretic peptide analogs and potency of these same peptides for stimulating intracellular cyclic GMP accumulation. Furthermore, analogs that bound to receptors and failed to elicit significant cyclic GMP responses did not antagonize or modulate increases in cyclic GMP induced by parent compounds. These data are most consistent with the existence of multiple subpopulations of atrial natriuretic peptide receptors on aortic smooth muscle cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号