首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Labeonini (sensu Rainboth, 1991) is a tribe of the subfamily Cyprininae, the largest subfamily of Cypriniformes. With around 400 species in 34 genera, this tribe is widely distributed in the freshwaters of tropical Africa and Asia. Most species are adapted to fast-flowing streams and rivers, and exhibit unique morphological modifications associated with their lips and other structures around the mouth. The monophyly of this tribe has been tested and generally accepted in previous morphological and molecular studies. The major objectives of this study were to reconstruct the phylogenetic relationships within the tribe Labeonini, test its monophyly and explore the taxonomic subdivisions, intrarelationships and biogeography of the group. The value of the morphological characters associated with the lips and other associated structures in the taxonomic classification of labeonins was also discussed. Nucleotide sequences (3867 bp) of four unlinked nuclear loci were obtained from 51 species in 18 Labeonini genera from throughout the range of the tribe. Maximum parsimony, partitioned maximum likelihood and partitioned Bayesian analyses were used for phylogenetic inference from combined and separate gene data sets. Based on our results, the monophyly of Labeonini was well supported. Two major clades could be recovered within the tribe. Three subclades could further be recognized from the first clade. These clades/subclades are not consistent with groupings of any of previous workers using either morphological or molecular characters for phylogenetic inference. Only five currently recognized genera in this analysis are monophyletic. The similarity between some lips and associated structures (e.g. suctorial discs) of labeonins may due to convergence or parallelism instead of common ancestry. Labeonins of Southeast Asia, India and China are closely related to each other; the multiple clades of African taxa do not form a single monophyletic group, indicating multiple, independent dispersal events of labeonins into Africa from Asia.  相似文献   

2.
Previous studies have suggested that the woodpecker genus Picus (Aves: Picidae) may not be monophyletic. In order to evaluate this hypothesis, we analyzed DNA sequences from all but two species of Picus, as well as from representatives of all genera in the tribe Malarpicini, within which Picus is nested. We sequenced seven loci (four autosomal, one Z-linked and two mitochondrial) with different evolutionary dynamics. The species currently placed in Picus fall into two subclades that may not form a monophyletic assemblage. Consequently, we propose to place miniaceus Pennant 1769, flavinucha Gould 1834 and mentalis Temminck 1825 in the genus Chrysophlegma Gould, 1850, while the remaining species are retained in Picus. The inclusion in our study of representatives of all genera included in the tribe Malarpicini, a group of woodpeckers which has proven difficult to resolve in several previous molecular studies, also allowed us to determine the earliest divergences within this clade. The results suggest that the low level of basal resolution in Malarpicini is attributable to multiple cladogenetic events in a short period of time rather than insufficient character sampling. This conclusion is supported by the observation of nucleotide insertion-deletions that support mutually exclusive phylogenetic hypotheses in different gene trees. We attribute this pattern of incongruent indels, together with short internodes in the tree, to incomplete lineage sorting.  相似文献   

3.
Despite its large size (about 700 species), the australy-centred sedge tribe Schoeneae has received little explicit phylogenetic study, especially using molecular data. As a result, generic relationships are poorly understood, and even the monophyly of the tribe is open to question. In this study, plastid DNA sequences (rbcL, trnL-trnF, and rps16) drawn from a broad array of Schoeneae are analysed using Bayesian and parsimony-based approaches to infer a framework phylogeny for the tribe. Both analytical methods broadly support the monophyly of Schoeneae, Bayesian methods doing so with good support. Within the schoenoid clade, there is strong support for a series of monophyletic generic groupings whose interrelationships are unclear. These lineages form a large polytomy at the base of Schoeneae that may be indicative of past radiation, probably following the fragmentation of Gondwana. Most of these lineages contain both African and non-African members, suggesting a history of intercontinental dispersal. The results of this study clearly identify the relationships of the African-endemic schoenoid genera and demonstrate that the African-Australasian genus Tetraria, like Costularia, is polyphyletic. This pattern is morphologically consistent and suggests that these genera require realignment.  相似文献   

4.
The taxonomic concepts of Blapimorpha and Opatrinae (informal and traditional, morphology‐based groupings among darkling beetles) are tested using molecular phylogenetics and a reassessment of larval and adult morphology to address a major phylogeny‐classification gap in Tenebrionidae. Instead of a holistic approach (family‐level phylogeny), this study uses a bottom‐up strategy (tribal grouping) in order to define larger, monophyletic lineages within Tenebrioninae. Sampling included representatives of 27 tenebrionid tribes: Alleculini, Amarygmini, Amphidorini, Blaptini, Bolitophagini, Branchini, Cerenopini, Coniontini, Caenocrypticini, Dendarini, Eulabini, Helopini, Lagriini, Melanimini, Opatrini, Pedinini, Phaleriini, Physogasterini, Platynotini, Platyscelidini, Praociini, Scaurini, Scotobiini, Tenebrionini, Trachyscelini, Triboliini and Ulomini. Molecular analyses were based on DNA sequence data from four non‐overlapping gene regions: carbamoyl‐phosphate synthetase domain of rudimentary (CAD) (723 bp), wingless (wg) (438 bp) and nuclear ribosomal 28S (1101 bp) and mitochondrial ribosomal 12S (363 bp). Additionally, 15 larval and imaginal characters were scored and subjected to an ancestral state reconstruction analysis. Results revealed that Amphidorini, Blaptini, Dendarini, Pedinini, Platynotini, Platyscelidini and Opatrini form a clade which can be defined by the following morphological features: adults—antennae lacking compound/stellate sensoria; procoxal cavities externally and internally closed, intersternal membrane of abdominal ventrites 3–5 visible; paired abdominal defensive glands present, elongate, not annulated; larvae—prolegs enlarged (adapted for digging); ninth tergite lacking urogomphi. To accommodate this monophyletic grouping (281 genera and ~4000 species), the subfamily Blaptinae sens. nov. is resurrected. Prior to these results, all of the tribes within Blaptinae were classified within the polyphyletic subfamily Tenebrioninae. The non‐monophyletic nature of Terebrioninae has already been postulated by previous authors, yet no taxonomic decisions were made to fix its status. The reinstatement of Blaptinae, which groups ~50% of the former Tenebrioninae, helps to clarify phylogenetic relations among the whole family and is the first step towards a complete higher‐level revision of Tenebrionidae. The Central Asian tribe Dissonomini (two genera, ~30 species) was not included in Blaptinae due to a lack of representatives in the performed phylogenetic analyses; however, based on morphological features, the tribe is listed as a potential addition to the subfamily.  相似文献   

5.
DNA sequences of the 5' end of the chloroplast ndhF gene for 15 species of Caryophyllaceae have been analyzed by parsimony and neighbor-joining analyses. Three major clades are identified, with little or no support for monophyly of traditionally recognized subfamilies. The first of the three major clades identified (Clade I) is constituted by part of the subfamily Paronychioideae. It includes members of the tribe Paronychieae and members of tribe Polycarpeae. The second (Clade II) contains members of the Paronychieae exclusively. Tribe Paronychieae is thus apparently polyphyletic and tribe Polycarpeae is at least paraphyletic. The third clade (Clade III) includes members of subfamilies Alsinoideae and Caryophylloideae along with the genus Spergularia. The genus Scleranthus is also part of Clade III, while Drymaria groups with the other genera of tribe Polycarpeae in Clade II. We conclude that morphological characters previously used to delimit subfamilial groupings in the Caryophyllaceae are apparently unreliable estimators of phylogeny.  相似文献   

6.
The pollinium morphology of the two members of the Asclepiadoideae, tribe Fockeeae, Fockea Endl. and Cibirhiza Bruyns, has been studied in detail and compared with that of eight genera of Marsdenieae, the tribe in which Fockea and Cibirhiza were previously accommodated and thus their putative closest relatives, as well as nine genera of Asclepiadeae. Both Fockea and Cibirhiza have several morphological characteristics in common, the most important of which is the absence of well-developed caudicula, which distinguishes them from all other genera of Asclepiadoideae known. The pollinium structure of these two genera, however, differs significantly. Whereas the pollinium of Cibirhiza consists of single pollen grains and is covered by a pollinium wall, as is typical for other Asclepiadoideae, the pollinium of Fockea consists of tetrads and is not covered by a pollinium wall, a condition otherwise typical of Secamonoideae. Fockea, however, has only two pollinia per anther, as does Cibirhiza and all other Asclepiadoideae, whereas the Secamonoideae have four pollinia per anther. Sequence data from two intergenic spacers, trnT-L and trnL-F and the trnL intron of cpDNA was analyzed. The ingroup included three species of Fockea and one species of Cibirhiza. The outgroup taxa consisted of three representatives each of Periplocoideae, and Secamonoideae and 24 species of Asclepiadoideae, including representatives of all tribes, of which eight genera belong to Marsdenieae, as outgroups. The results of the DNA analysis provide strong support for Fockeeae as a monophyletic tribe, distinct from Marsdenieae and, to the rest of the Asclepiadoideae. With the exception of pollen data, all morphological and molecular evidence clearly support recognition of the tribe Fockeeae. The occurrence of two such significantly different types of pollinia structure – characters elsewhere in the family used to distinguish subfamilies – within the small tribe Fockeeae was unexpected, and can perhaps best be understood as yet another attestment to the basal position of the Fockeeae in the nascence of the Asclepiadoideae.  相似文献   

7.
The relationships among the genera and tribal groupings of Riodininae with five forewing radial veins, and between these and tribes with four forewing radial veins, were examined using a phylogenetic analysis. Using the type species from all sixteen genera in the tribal groupings Eurybiini, Mesosemiini and incertae sedis (a presumed paraphyletic group of loosely related genera), and representatives from the four forewing radial‐veined riodinine tribes, thirty‐five new and traditional characters were coded from adult ecology, wing venation and pattern, the adult head and body, male and female genitalia, and early stage ecology and morphology. The majority of characters are illustrated. Phylogenetic analysis of these data produced five equally most parsimonious cladograms using equal weights and after successive weighting. The strict consensus of these confirms the monophyly of Eurybiini and Mesosemiini as currently conceived, but also indicates several higher‐level relationships not previously hypothesized. Mesosemiini is here more broadly defined to also include the entire incertae sedis section, and the tribe is divided into Mesosemiina, for the previously delimited Mesosemiini plus Eunogyra and Teratophthalma, and Napaeina, subtr.n. for the incertae sedis section minus these two genera. The following hypothesis of relationships is tentatively proposed for the basal clades of Riodininae: Mesosemiini + (Eurybiini + remainder of Riodininae). These new hypotheses, and the characters supporting them, are discussed and compared with those previously proposed.  相似文献   

8.
The taxonomic significance of the polysaccharide structures of algal cell walls has been underscored several times over the past few decades but has never been pursued systematically. Many changes in red algal systematics and the biochemical analyses of phycocolloids have occured in recent years. The cell-wall composi-tion of representatives of 167 (24.7%) genera and 470 (11.5%) species of red algae has been documented.The method developed by Chopin and Whalen for carrageenan identification by Fourier transform infrared diffuse reflectance spectroscopy is extended to the study of phycocolloids for diverse species in many red algal orders. This paper focuses on the Gigartinales in which representatives of 28 (68.3%) families, 88 (50.6%) genera and 224 (27.9%) species have been analyzed. In light of recent molecular phylogenies, some patterns of distribution of key phycocolloid attributes, corresponding to familial and ordinal level groupings, are emerging; however, more species remain to be analyzed. The well-documented biochemical alternation of generations in the Phyllophoraceae, Petrocelidaceae and Gigartinaceae still holds (with two exceptions), but this pattern was not recorded in other families of Gigartinales.  相似文献   

9.
The taxocene of lichen-feeding darkling beetles from the tribe Helopini is studied in the steppes of the south of Rostov Province. The species of lichens grazed on by the representatives of this tribe are identified for the first time and dependence of circadian activity and spatial distribution of adults on temperature and air humidity is shown. Global warming and human activities may have caused degradation of steppe lichen communities that formed the dietary base for the lichen-feeding darkling beetles in natural ecosystems. As a result, 3 out of 4 beetle species completely left steppe biotopes for tree shelterbelts. This caused a change in the trophic relationships (transition from epigeic to epiphytic lichens) and in the spatial distribution of darkling beetles, promoted the establishment of competitive interactions, and increased the duration of circadian and seasonal activity due to the lengthening of the periods with optimum temperature and air humidity for each species.  相似文献   

10.
11.
A new species Sequoioxylon burejense Blokhina et M. Afonin (Taxodiaceae), identified on the basis of anatomical features of fossil wood from the Middle Maastrichtian (Upper Cretaceous) of the Zeya-Bureya Basin, Amur Region, Russian Far East, is described. The new species is characterized by mixed anatomical features of the modern representatives of the tribe Sequoieae. Cretaceous wood of Taxodiaceae was found in the Amur Region for the first time.  相似文献   

12.
Recent molecular studies have elucidated the phylogeny of Compositae tribe Arctotideae, and found it to contain two, well supported, monophyletic subtribes, Arctotidineae and Gorteriinae, as well as some polyphyletic and problematic genera. On the basis of this new information, it may now be possible to identify diagnostic characters and synapomorphies to support the groupings defined within Arctotideae. Pollen characters have been shown to be particularly variable in Compositae. This paper aims to investigate the utility of those characters in the context of recent molecular phylogenies, in order to determine synapomorphic and diagnostic characters in Arctotideae. The pollen of each genus is described, illustrated with scanning electron micrographs, and optimised on a phylogeny of the tribe. Many pollen characters were found to be very informative when considered in the context of the current best estimate of phylogenetic relationships. Pollen morphology provides synapomorphies for clades at a number of hierarchical levels within Arctotideae, including the two subtribes, Arctotidinae and Gorteriinae, the grouping of Eremothamnus and Hoplophyllum, and smaller clades. It also supports the exclusion of Platycarpha from the tribe. The plesiomorphic palynological state for the tribe is discussed. Particular attention is paid to the evolution of different patterns of lophae (surface ridges). A single origin for the lophate condition is proposed as the most parsimonious mode of evolution in Arctotideae.  相似文献   

13.
Alpinia is the largest, most widespread, and most taxonomically complex genus in the Zingiberaceae with 230 species occurring throughout tropical and subtropical Asia. Species of Alpinia often predominate in the understory of forests, while others are important ornamentals and medicinals. Investigations of the evolutionary relationships of a subset of species of Alpinia using DNA sequence-based methods specifically test the monophyly of the genus and the validity of the previous classifications. Seventy-two species of Alpinia, 27 non-Alpinia species in the subfamily Alpinioideae, eight species in the subfamily Zingiberoideae, one species in the subfamily Tamijioideae, and three species in the outgroup genus Siphonochilus (Siphonochiloideae) were sequenced for the plastid matK region and the nuclear internal transcribed spacer (ITS) loci. Parsimony analyses of both individual and combined data sets identified six polyphyletic clades containing species of Alpinia distributed across the tribe Alpinieae. These results were supported by a Bayesian analysis of the combined data set. Except in a few specific cases, these monophyletic groupings of species do not correspond with either Schumann's (1904) or Smith's (1990) classification of the genus. Here we build on previous molecular analyses of the Alpinioideae and propose the next steps necessary to recognize new generic boundaries in the Alpinieae.  相似文献   

14.
Helopini is a diverse tribe in the subfamily Tenebrioninae with a worldwide distribution. The New World helopine species have not been reviewed recently and several doubts emerge regarding their generic assignment as well as the naturalness of the tribe and subordinate taxa. To assess these questions, a preliminary cladistic analysis was conducted with emphasis on sampling the genera distributed in the New World, but including representatives from other regions. The parsimony analysis includes 30 ingroup species from America, Europe and Asia of the subtribes Helopina and Cylindrinotina, plus three outgroups, and 67 morphological characters. Construction of the matrix resulted in the discovery of morphological character states not previously reported for the tribe, particularly from the genitalia of New World species. A consensus of the 12 most parsimonious trees supports the monophyly of the tribe based on a unique combination of characters, including one synapomorphy. None of the subtribes or the genera of the New World represented by more than one species (Helops Fabricius, Nautes Pascoe and Tarpela Bates) were recovered as monophyletic. Helopina was recovered as paraphyletic in relation to Cylindrinotina. One Nearctic species of Helops and one Palearctic species of Tarpela (subtribe Helopina) were more closely related to species of Cylindrinotina. A relatively derived clade, mainly composed by Neotropical species, was found; it includes seven species of Tarpela, seven species of Nautes, and three species of Helops, two Nearctic and one Neotropical. Our results reveal the need to deeply re-evaluate the current classification of the tribe and subordinated taxa, but a broader taxon sampling and further character exploration is needed in order to fully recognize monophyletic groups at different taxonomic levels (from subtribes to genera).  相似文献   

15.
Foliar flavonoids of 31 species of the Annonaceae native to Brazil, amounting to 76 compounds, were isolated and identified. All phenols found were glycosides of either flavones (apigenin, scutellarein, hispidulin and luteolin) or flavonols (kaempferol, rhamnocitrin, 6-hydroxyrhamnocitrin, quercetin, isorhamnetin and rhamnetin), with the latter predominating. Some members of the tribe Bocageeae are distinctive for accumulating 6-oxygenated flavones and flavonols, in addition to 7-O-methylated flavonols, a feature possibly linked to the assumed advanced condition of the tribe within the family. Members of Duguetia stand out for the apparent absence of quercetin glycosides. Anaxagorea dolichocharpa seemingly lacks flavones and flavonols entirely. A UPGMA analysis based on the distribution of flavonoids does not group the analyzed species according to the available tribal division of the Annonaceae. However, several taxonomically meaningful groupings emerged through the multivariate analysis.  相似文献   

16.
The phylogenetic relationships of Peniocereus (Cactaceae) species were studied using parsimony analyses of DNA sequence data. The plastid rpl16 and trnL-F regions were sequenced for 98 taxa including 17 species of Peniocereus, representatives from all genera of tribe Pachycereeae, four genera of tribe Hylocereeae, as well as from three additional outgroup genera of tribes Calymmantheae, Notocacteae, and Trichocereeae. Phylogenetic analyses support neither the monophyly of Peniocereus as currently circumscribed, nor the monophyly of tribe Pachycereeae since species of Peniocereus subgenus Pseudoacanthocereus are embedded within tribe Hylocereeae. Furthermore, these results show that the eight species of Peniocereus subgenus Peniocereus (Peniocereus sensu stricto) form a well-supported clade within subtribe Pachycereinae; P. serpentinus is also a member of this subtribe, but is sister to Bergerocactus. Moreover, Nyctocereus should be resurrected as a monotypic genus. Species of Peniocereus subgenus Pseudoacanthocereus are positioned among species of Acanthocereus within tribe Hylocereeae, indicating that they may be better classified within that genus. A number of morphological and anatomical characters, especially related to the presence or absence of dimorphic branches, are discussed to support these relationships.  相似文献   

17.
Phylogenetic relationships based on 801 base pairs (bp) of the mitochondrial cytochrome b gene are examined for eight genera and 28 species of the akodontine tribe of South American murid rodents. The akodontine tribe comprises some 35% of the total diversity of the subfamily Sigmodontinae, but the current taxonomy at virtually all levels is uncertain because of inadequate generic diagnoses and assessments of variation and trends in traditional morphological characters. Monophyly of the tribe cannot be resolved by the sequence data, based on comparisons to outgroup taxa in three other tribes (Oryzomyini, Phyllotini, and Thomasomyini). However, highly corroborated monophyletic units within the group are obtained in a variety of both parsimony and distance analyses. These include a redefined and numerically dominant genus Akodon (with Microxus and Hypsimys as synonyms), Bolomys, Lenoxus, Oxymycterus, and a strongly supported assemblage that includes the central Andean Chroeomys and 'Akodon' andinus and the southern Abrothrix, 'Akodon' olivaceus, and the long-clawed mice of the genera Notiomys, Geoxus, and Chelemys. Sequence divergence within species is typically less than 5%, although levels can reach 10% for some highly polytypic forms. Divergence among genera within the tribe reaches 35% in corrected estimates, a level that is as great as that among representatives of different tribes. Changes in the current classification of akodontines are suggested based on these data, and the timing and place of origin of the tribe and its radiation is discussed.  相似文献   

18.
Twenty species, including representatives of all 11 genera of the Callitroideae, were examined for biflavonoid content of the leafy twigs. The major biflavonoids are based on amentoflavone, cupressuflavone and hinokiflavone. Their uneven distribution amongst the genera allows the distinction of five groups. These do not correlate strongly with currently recognized tribal groupings. The affinities of these genera are discussed.  相似文献   

19.
The family Syrphidae (Diptera) is traditionally divided into three subfamilies. The aim of this study was to address the monophyly of the tribes within the subfamily Syrphinae (virtually all with predaceous habits), as well as the phylogenetic placement of particular genera using molecular characters. Sequence data from the mitochondrial protein-coding gene cytochrome c oxidase subunit I ( COI ) and the nuclear 28S ribosomal RNA gene of 98 Syrphinae taxa were analyzed using optimization alignment to explore phylogenetic relationships among included taxa. Volucella pellucens was used as outgroup, and representatives of the tribe Pipizini (Eristalinae), with similar larval feeding mode, were also included. Congruence of our results with current tribal classification of Syrphinae is discussed. Our results include the tribe Toxomerini resolved as monophyletic but placed in a clade with genera Ocyptamus and Eosalpingogaster . Some genera traditionally placed into Syrphini were resolved outside of this tribe, as the sister groups to other tribes or genera. The tribe Bacchini was resolved into several different clades. We recovered Paragini as a monophyletic group, and sister group of the genus Allobaccha . The present results highlight the need of a reclassification of Syrphinae.
© The Willi Hennig Society 2008.  相似文献   

20.
Cyperaceae are the third largest monocotyledon family, with considerable economic and conservation importance. In subfamily Mapanioideae there is particular specialization of the inflorescence into units termed spicoids. The structural homology of the spicoid is difficult to interpret, making determination of intrafamilial relationships problematic. To address this, pollen from eight species in Mapanioideae was investigated using light microscopy and scanning and transmission electron microscopy. Pollen development was also examined to identify the type of pollen present in these species. We also analyzed DNA sequence data using the trnL-F and rps16 regions from 25 genera and 35 species of Cyperaceae, Juncaceae, and Thurniaceae. Two types of pollen, Mapania-type and pseudomonad, were identifed. Analysis of combined DNA and pollen data resolved a clade sister to the rest of Cyperaceae, corresponding to Mapanioideae. Within this, two further clades were resolved. One comprised taxa assigned to tribe Hypolytreae, which had Mapania-type pollen. The other comprised taxa mainly assigned to tribe Chrysitricheae, but included two taxa from Hypolytreae, Capitularina and Exocarya. All taxa in this clade had pseudomonad pollen. Thus new groupings within the subfamily have been discovered based on the specialization of some taxa in terms of their pollination biology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号