首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
We assessed genetic and environmental influence on fetal outcome in diabetic rat pregnancy. Crossing normal (N) and manifestly diabetic (MD) Wistar Furth (W) and Sprague-Dawley (L) females with W or L males yielded four different fetal genotypes (WW, LL, WL, and LW) in N or MD rat pregnancies for studies. We also evaluated fetal outcome in litters with enhanced or diminished severity of maternal MD state, denoted MD(+)WL and MD(-)LW. The MDWW litters had less malformations and resorptions (0 and 19%) than the MDLL litters (17 and 30%). The MDWL litters (0 and 8%) were less maldeveloped than the MDLW litters (9 and 22%), whereas the MD(+)WL (3 and 23%) and MD(-)LW (1 and 17%) litters showed increased and decreased dysmorphogenesis (compared with MDWL and MDLW litters). The pregnant MDW rats had lower serum levels of glucose, fructosamine, and branched-chain amino acids than the pregnant MDL rats, whereas the pregnant MD(+)W and MD(-)L rats had levels comparable with those of the MDL and MDW rats, respectively. The 8-iso-PGF2α levels of the malformed MDLW offspring were increased compared with the nonmalformed MDLW offspring. Diabetes decreased fetal heart Ret and increased Bmp-4 gene expression in the MDLW offspring and caused decreased GDNF and Shh expression in the malformed fetal mandible of the MDLW offspring. We conclude that the fetal genome controls the embryonic dysmorphogenesis in diabetic pregnancy by instigating a threshold level for the teratological insult and that the maternal genome controls the teratogenic insult by (dys)regulating the maternal metabolism.  相似文献   

3.
The nutritional traits of maize kernels are important for human and animal nutrition, and these traits have undergone selection to meet the diverse nutritional needs of humans. However, our knowledge of the genetic basis of selecting for kernel nutritional traits is limited. Here, we identified both single and epistatic quantitative trait loci (QTLs) that contributed to the differences of oil and carotenoid traits between maize and teosinte. Over half of teosinte alleles of single QTLs increased the values of the detected oil and carotenoid traits. Based on the pleiotropism or linkage information of the identified single QTLs, we constructed a trait–locus network to help clarify the genetic basis of correlations among oil and carotenoid traits. Furthermore, the selection features and evolutionary trajectories of the genes or loci underlying variations in oil and carotenoid traits revealed that these nutritional traits produced diverse selection events during maize domestication and improvement. To illustrate more, a mutator distance–relative transposable element (TE) in intron 1 of DXS2, which encoded a rate‐limiting enzyme in the methylerythritol phosphate pathway, was identified to increase carotenoid biosynthesis by enhancing DXS2 expression. This TE occurs in the grass teosinte, and has been found to have undergone selection during maize domestication and improvement, and is almost fixed in yellow maize. Our findings not only provide important insights into evolutionary changes in nutritional traits, but also highlight the feasibility of reintroducing back into commercial agricultural germplasm those nutritionally important genes hidden in wild relatives.  相似文献   

4.
Measuring genetic diversity in populations of a crop species is very important for understanding the genetic structure of and subsequently improving the crop species by genetic manipulation. Single-nucleotide amplified polymorphisms (SNAPs) among and within maize populations of waxy, dent, and sweet corns at 25 single-nucleotide polymorphism (SNP) sites in 6 kernel starch-synthesis genes (sh2, bt2, su1, ae1, wx1, and sh1) were determined. Because of the intensive selection of some favorable alleles in starch-synthesis genes during the breeding process, and the resultant strong linkage disequilibrium (LD), the number of haplotypes in each population was far less than expected. Subsequent phenetic clustering analysis with the SNAPs indicated that the dent, waxy, and sweet corns formed distinct subclusters, except in a few incidences. LD was surveyed among SNAPs of intragenic, intergenic, and intrachromosomal SNPs in whole and subpopulations, which revealed that some SNAPs showed high LD with many other SNAPs, but some SNAPs showed low or no significant LD with others, depending on the subpopulation, indicating that these starch genes have undergone different selection in each subpopulation during the breeding process. Because the starch synthesis genes used in this study are important in maize breeding, the genetic diversity, LD, and accessions having rare SNAP alleles might be valuable in maize improvement programs.  相似文献   

5.
Defective kernel mutants of maize. I. Genetic and lethality studies   总被引:12,自引:1,他引:11       下载免费PDF全文
Neuffer MG  Sheridan WF 《Genetics》1980,95(4):929-944
A planting of 3,919 M1 kernels from normal ears crossed by EMS-treated pollen produced 3,461 M1 plants and 3,172 selfed ears. These plants yielded 2,477 (72%) total heritable changes; the selfed ears yielded 2,457 (78%) recessive mutants, including 855 (27%) recessive kernel mutants and 8 (0.23%) viable dominant mutants. The ratio of recessive to dominant mutants was 201:1. The average mutation frequency for four known loci was three per 3,172 genomes analyzed. The estimated total number of loci mutated was 535 and the estimated number of kernel mutant loci mutated was 285. Among the 855 kernel mutants, 432 had a nonviable embryo, and 59 germinated but had a lethal seedling. A sample of 194 of the latter two types was tested for heritability, lethality, chromosome arm location and endosperm-embryo interaction between mutant and nonmutant tissues in special hyper-hypoploid combinations produced by manipulation of B-A translocations. The selected 194 mutants were characterized and catalogued according to endosperm phenotype and investigated to determine their effects on the morphology and development of the associated embryo. The possibility of rescuing some of the lethal mutants by covering the mutant embryo with a normal endosperm was investigated. Ninety of these 194 mutants were located on 17 of the 18 chromosome arms tested. Nineteen of the located mutants were examined to determine the effect of having a normal embryo in the same kernel with a mutant endosperm, and vice versa, as compared to the expression observed in kernels with both embryo and endosperm in a mutant condition. In the first situation, for three of the 19 mutants, the mutant endosperm was less extreme (the embryo helped); for seven cases, the mutant endosperm was more extreme (the embryo hindered); and for nine cases, there was no change. In the reverse situation, for four cases the normal endosperm helped the mutant embryo; for 14 cases there was no change and one case was inconclusive.  相似文献   

6.
The influence of donor plant genotype, ear maturity, explant size, and the ratio of ovule-to-cob tissue on kernel development from in vitro pollinated ovules was examined. All genotypes evaluated in this study were capable of in vitro pollination/fertilization, however, significant differences were observed for the responses measured. Genotype means for complete kernel formation ranged from 1.5% to 25.4% with B73 exhibiting the highest response. Averaged over all genotypes, ear maturity effects were not significant, however, the genotype x ear maturity mean square was significant for swelling percentage. Explant size had a profound effect on in vitro kernel development. Averaged over all genotypes and ear maturities, 30-ovule explants resulted in more than twice as many ovules classified as complete kernels when compared to 10-ovule explants. Ovule-to-cob tissue ratio was also found to have highly significant effects on all three variables measured. An ovule-to-cob tissue ratio of 4:24 resulted in the highest percentages of swelling, embryos with incomplete embryos, and complete kernels.  相似文献   

7.
Fluctuating asymmetry (FA) is defined as random deviations from bilateral symmetry of the body. Thus, its magnitude is often used to evaluate developmental homeostasis. In this study we evaluate the following hypotheses: 1) FA of dermatoglyphic traits has a significant genetic component; 2) prenatal maternal environment (PME) has a significant effect on the FA of dermatoglyphic traits in developmentally healthy individuals; and 3) genetic or environmental factors affect FA on organismal or systemic levels. Therefore, their effect is better seen in composite scores of FA rather than in FA indices for single traits. We analyzed 15 dermatoglyphic traits from 140 pairs of monozygous twins, 120 pairs of dizygous twins, and 106 pairs of mothers and daughters. All individuals were developmentally healthy. The influence of genetic and environmental factors on FA was evaluated by analysis of variance and regression analysis. For a majority of the traits in our study, FA showed significant but weak heritabilities, with values falling within the 0.20-0.35 range. None of the traits taken separately demonstrated the effect of PME on FA to be significantly greater than zero. The composite score of FA tended to have greater heritability values than individual traits. One of them, obtained in principal components analysis, showed a significant PME effect, supporting the hypothesis that FA is a systemic property.  相似文献   

8.

Key Message

Twelve major QTL in five optimal clusters and several epistatic QTL are identified for maize kernel size and weight, some with pleiotropic will be promising for fine-mapping and yield improvement.

Abstract

Kernel size and weight are important target traits in maize (Zea mays L.) breeding programs. Here, we report a set of quantitative trait loci (QTL) scattered through the genome and significantly controlled the performance of four kernel traits including length, width, thickness and weight. From the cross V671 (large kernel) × Mc (small kernel), 270 derived F2:3 families were used to identify QTL of maize kernel-size traits and kernel weight in five environments, using composite interval mapping (CIM) for single-environment analysis along with mixed linear model-based CIM for joint analysis. These two mapping strategies identified 55 and 28 QTL, respectively. Among them, 6 of 23 coincident were detected as interacting with environment. Single-environment analysis showed that 8 genetic regions on chromosomes 1, 2, 4, 5 and 9 clustered more than 60 % of the identified QTL. Twelve stable major QTLs accounting for over 10 % of phenotypic variation were included in five optimal clusters on the genetic region of bins 1.02–1.03, 1.04–1.06, 2.05–2.07, 4.07–4.08 and 9.03–9.04; the addition and partial dominance effects of significant QTL play an important role in controlling the development of maize kernel. These putative QTL may have great promising for further fine-mapping with more markers, and genetic improvement of maize kernel size and weight through marker-assisted breeding.  相似文献   

9.

Background

The purpose of this study was to evaluate collagen deposition, mRNA collagen synthesis and TGF-beta expression in the lung tissue in an experimental model of scleroderma after collagen V-induced nasal tolerance.

Methods

Female New Zealand rabbits (N = 12) were immunized with 1 mg/ml of collagen V in Freund's adjuvant (IM). After 150 days, six immunized animals were tolerated by nasal administration of collagen V (25 μg/day) (IM-TOL) daily for 60 days. The collagen content was determined by morphometry, and mRNA expressions of types I, III and V collagen were determined by Real-time PCR. The TGF-beta expression was evaluated by immunostaining and quantified by point counting methods. To statistic analysis ANOVA with Bonferroni test were employed for multiple comparison when appropriate and the level of significance was determined to be p < 0.05.

Results

IM-TOL, when compared to IM, showed significant reduction in total collagen content around the vessels (0.371 ± 0.118 vs. 0.874 ± 0.282, p < 0.001), bronchioles (0.294 ± 0.139 vs. 0.646 ± 0.172, p < 0.001) and in the septal interstitium (0.027 ± 0.014 vs. 0.067 ± 0.039, p = 0.026). The lung tissue of IM-TOL, when compared to IM, showed decreased immunostaining of types I, III and V collagen, reduced mRNA expression of types I (0.10 ± 0.07 vs. 1.0 ± 0.528, p = 0.002) and V (1.12 ± 0.42 vs. 4.74 ± 2.25, p = 0.009) collagen, in addition to decreased TGF-beta expression (p < 0.0001).

Conclusions

Collagen V-induced nasal tolerance in the experimental model of SSc regulated the pulmonary remodeling process, inhibiting collagen deposition and collagen I and V mRNA synthesis. Additionally, it decreased TGF-beta expression, suggesting a promising therapeutic option for scleroderma treatment.  相似文献   

10.
11.
The maize (Zea mays) kernel plays a critical role in feeding humans and livestock around the world and in a wide array of industrial applications. An understanding of the regulation of kernel starch, protein, and oil is needed in order to manipulate composition to meet future needs. We conducted joint-linkage quantitative trait locus mapping and genome-wide association studies (GWAS) for kernel starch, protein, and oil in the maize nested association mapping population, composed of 25 recombinant inbred line families derived from diverse inbred lines. Joint-linkage mapping revealed that the genetic architecture of kernel composition traits is controlled by 21-26 quantitative trait loci. Numerous GWAS associations were detected, including several oil and starch associations in acyl-CoA:diacylglycerol acyltransferase1-2, a gene that regulates oil composition and quantity. Results from nested association mapping were verified in a 282 inbred association panel using both GWAS and candidate gene association approaches. We identified many beneficial alleles that will be useful for improving kernel starch, protein, and oil content.  相似文献   

12.
C. Y. Tsai 《Biochemical genetics》1979,17(11-12):1109-1119
Zein may account for as much as 10% of the total protein in the mature embryo of maize inbred W64A. This protein exhibited an electrophoretic pattern on SDS gels similar to that of the endosperm. Like the endosperm system, the synthesis of zein components in the embryo was controlled by the opaque-2 and floury-2 mutations. However, unlike zein synthesis in the endosperm, zein synthesis in the embryo could not be increased by nitrogen fertilizer. Variations in amino acid composition were observed between the zein components of the embryo and those of the endosperm.  相似文献   

13.
The xylem in plants has mainly been described as a conduit for water and minerals, but emerging evidence also indicates that the xylem contains protein. To study the proteins in xylem sap, we characterized the identity and composition of the maize xylem sap proteome. The composition of the xylem sap proteome in maize revealed proteins related to different phases of xylem differentiation including cell wall metabolism, secondary cell wall synthesis, and programmed cell death. Many proteins were found to be present as multiple isoforms and some of these isoforms are glycosylated. Proteins involved in defense mechanisms were also present in xylem sap and the sap proteins were shown to have antifungal activity in bioassays.  相似文献   

14.
A two-dimensional proteome map of maize endosperm   总被引:8,自引:0,他引:8  
We have established a proteome reference map for maize (Zea mays L.) endosperm by means of two-dimensional gel electrophoresis and protein identification with LC-MS/MS analysis. This investigation focussed on proteins in major spots in a 4-7 pI range and 10-100 kDa M(r) range. Among the 632 protein spots processed, 496 were identified by matching against the NCBInr and ZMtuc-tus databases (using the SEQUEST software). Forty-two per cent of the proteins were identified against maize sequences, 23% against rice sequences and 21% against Arabidopsis sequences. Identified proteins were not only cytoplasmic but also nuclear, mitochondrial or amyloplastic. Metabolic processes, protein destination, protein synthesis, cell rescue, defense, cell death and ageing are the most abundant functional categories, comprising almost half of the 632 proteins analyzed in our study. This proteome map constitutes a powerful tool for physiological studies and is the first step for investigating the maize endosperm development.  相似文献   

15.
Enzyme activities associated with maize kernel amyloplasts   总被引:15,自引:8,他引:7       下载免费PDF全文
Activities of the enzymes of gluconeogenesis and of starch metabolism were measured in extracts of amyloplasts isolated from protoplasts derived from 14-day-old maize (Zea mays L., cv Pioneer 3780) endosperm. The enzymes triosephosphate isomerase, fructose-1,6-bisphosphate aldolase, fructose-1,6-bisphosphatase, phosphohexose isomerase, phosphoglucomutase, ADPG pyrophosphorylase, UDPG pyrophosphorylase, soluble and bound starch synthases, and branching enzyme were found to be present in the amyloplasts. Of the above enzymes, ADPG pyrophosphorylase had the lowest activity per amyloplast. Invertase, sucrose synthase and hexokinase were not detected in similar amyloplast preparations. Only a trace of the cytoplasmic marker enzyme alcohol dehydrogenase could be detected in purified amyloplast fractions. In separate experiments, purified amyloplasts were lysed and then supplied with radioactively labeled glucose-6-phosphate, glucose-1-phosphate, fructose-1,6-bisphosphate, dihydroxyacetone phosphate, glucose, fructose, sucrose, and 3-0-methylglucose in the presence of adenosine triphosphate or uridine triphosphate. Of the above, only the phosphorylated substrates were incorporated into starch. Incorporation into starch was higher with added uridine triphosphate than with adenosine triphosphate. Dihydroxyacetone phosphate was the preferred substrate for uptake by intact amyloplasts and incorporation into starch. In preliminary experiments, it appeared that glucose-6-P and fructose-1,6-bisphosphate may also be taken up by intact amyloplasts. However, the rate of uptake and incorporation into starch was relatively low and variable. Additional study is needed to determine conclusively whether hexose phosphates will cross intact amyloplast membranes. From these data, we conclude that: (a) Triose phosphate is the preferred substrate for uptake by intact amyloplasts. (b) Amyloplasts contain all enzymes necessary to convert triose phosphates into starch. (c) Sucrose breakdown must occur in the cytosol prior to carbohydrate transfer into the amyloplasts. (d) Under the conditions of assay, amyloplasts are unable to convert glucose or fructose to starch. (e) Uridine triphosphate may be the preferred nucleotide for conversion of hexose phosphates to starch at this stage of kernel development.  相似文献   

16.
正The maize kernel contains two filial products of the double fertilization, wherein one of the two sperm cells(1C, the DNA content of a haploid genome) from a pollen grain fertilizes the egg(1 C) to form the zygote and the other sperm fuses with the central cell(2C) to produce the primary endosperm. The zygote(2C) undergoes a series of asymmetric and symmetric divisions and axial patterning, eventually differ-  相似文献   

17.
The maize (Zea mays L.) kernel undergoes large changes in water content during its development. Whether such changes regulate the pattern of kernel development or are simply a consequence of it has not yet been established because other factors, such as assimilate supply, can also affect the rate and duration of kernel growth. This study was conducted to determine whether variation in kernel weight (KW) in response to source-sink treatments is mediated by a change in kernel water relations. Two hybrids were sown at three stand densities (one, eight and 18 plants m-2), and kernel numbers were restricted to control the post-flowering source-sink ratio within each stand density. Kernel development and water relations [water content, water potential (psiw), osmotic potential (psis) and turgor] were monitored throughout grain filling. Final KW varied from 253 to 372 mg per kernel in response to source-sink treatments. For both genotypes, variation in KW was a result of a change in kernel growth rate (r2 = 0.91; P < 0.001) and not in the duration of kernel filling. Final KW was closely correlated with maximum kernel water content (r2 = 0.94; P < 0.001) achieved during rapid dry matter accumulation. However, variation in KW was not reflected in kernel water status parameters (psiw, psis or turgor), which remained fairly stable across treatments. These results indicate that maximum water content provides an easily quantifiable measure of kernel sink capacity in maize. Kernel water status parameters may affect the duration of grain filling, but have no discernible impact on kernel growth rate.  相似文献   

18.
1. The dormant eggs of Daphnia (Crustacea: cladocera) are encased in a protective, chitonous casing known as an ephippium. Ephippia are pigmented with melanin, and the degree of pigmentation ranges from transparent to opaque. Variation in pigmentation exists within and across populations and species, raising questions about the factors that influence the natural distribution of pigmentation. 2. We used image analysis to quantify pigmentation in ephippial casings of Daphnia pulicaria that were produced both in the field and in the laboratory. The percentage of the surface area of ephippia that is darkly pigmented ranged from 0.5 to 99.5%. The range, mean and variance of ephippial pigmentation varied across our 11 study lakes. 3. Laboratory experiments compared clonal variation (five clones/lake) and population variation (five lakes) at three temperatures (15 °C, 20 °C and 25 °C). The degree of pigment variation between clones was much greater than pigment variation between temperatures, indicating that there is a genetic component to pigmentation in the ephippia which is stronger than the effect of temperature. 4. Comparisons of pigment levels and lake characteristics were used to identify physical and biological factors associated with ephippial pigmentation. Investment in ephippial production was the strongest predictor with darker ephippia occurring more often in lakes with the highest ephippial production.  相似文献   

19.

Background and Aims

Water limitations can inhibit photosynthesis and change gene expression in ways that diminish or prevent reproductive development in plants. Sucrose fed to the plants can reverse the effects. To test whether the reversal acts generally by replacing the losses from photosynthesis, sucrose was fed to the stems of shaded maize plants (Zea mays) during reproductive development.

Methods

Shading was adjusted to mimic the inhibition of photosynthesis around the time of pollination in water-limited plants. Glucose and starch were imaged and quantified in the female florets. Sucrose was infused into the stems to vary the sugar flux to the ovaries.

Key Results

Ovaries normally grew rapidly and contained large amounts of glucose and starch, with a glucose gradient favouring glucose movement into the developing ovary. Shade inhibited photosynthesis and diminished ovary and kernel size, weight, and glucose and starch contents compared with controls. The glucose gradient became small. Sucrose fed to the stem reversed these losses, and kernels were as large as the controls.

Conclusions

Despite similar inhibition of photosynthesis, the depletion of ovary glucose and starch was not as severe in shade as during a comparable water deficit. Ovary abortion prevalent during water deficits did not occur in the shade. It is suggested that this difference may have been caused by more translocation in shade than during the water deficit, which prevented low sugar contents necessary to trigger an up-regulation of senescence genes known to be involved in abortion. Nevertheless, sucrose feeding reversed kernel size losses and it is concluded that feeding acted generally to replace diminished photosynthetic activity.  相似文献   

20.
Chivasa S  Simon WJ  Yu XL  Yalpani N  Slabas AR 《Proteomics》2005,5(18):4894-4904
The extracellular matrix is a vital compartment in plants with a prominent role in defence against pathogen attack. Using a maize cell suspension culture system and pathogen elicitors, responses to pathogen attack that are localised to the extracellular matrix were examined by a proteomic approach. Elicitor treatment of cell cultures induced a rapid change in the phosphorylation status of extracellular peroxidases, the apparent disappearance of a putative extracellular beta-N-acetylglucosamonidase, and accumulation of a secreted putative xylanase inhibitor protein. Onset of the defence response was attended by an accumulation of glyceraldehyde-3-phosphate dehydrogenase and a fragment of a putative heat shock protein. Several distinct spots of both proteins, which preferentially accumulated in cell wall protein fractions, were identified. These three novel observations, viz. (i) secretion of a new class of putative enzyme inhibitor, (ii) the apparent recruitment of classical cytosolic proteins into the cell wall and (ii) the change in phosphorylation status of extracellular matrix proteins, suggest that the extracellular matrix plays a complex role in defence. We discuss the role of the extracellular matrix in signal modulation during pathogen-induced defence responses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号