首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ulcerative colitis is a chronic gastrointestinal disorder eliciting the risk of colorectal cancer, the third most common malignancy in humans. The present study was aimed to characterize dextran sulfate sodium-induced ulcerative colitis and to elucidate its influence on the bone marrow cell proliferation and the subsequent stimulation of the systemic genotoxicity in mice. Experimental colitis was induced in Swiss mice using 3% (w/v) dextran sulfate sodium in drinking water. The severity of colitis was assessed on the basis of clinical signs, colon length, oxidative stress parameters, various pro-inflammatory markers, histopathological evaluation and immunohistochemical staining of 8-oxo-7,8-dihydro-2'-deoxyguanosine in the colon of dextran sulfate sodium treated mice. Further, assessment of genotoxicity was carried out using alkaline and modified comet assays in the colon and lymphocytes and micronucleus assay in the peripheral blood of mice. For the evaluation of inflammation-induced cell proliferation in the bone marrow, proliferating cell nuclear antigen immunostaining was carried out in the bone marrow of mice. Dextran sulfate sodium induced severe colitis as evident from the elevated disease activity index, reduced colon length, increased oxidative stress, histological abnormalities and oxidative DNA damage in the colon of mice. Moreover, colitis-induced elevated prostaglandin-E2 level in the plasma of dextran sulfate sodium treated mice stimulated the cell proliferation in the bone marrow, which further triggered colitis-induced DNA damage in the peripheral blood of mice.  相似文献   

2.
3.
Pélissier MA  Muller C  Hill M  Morfin R 《Steroids》2006,71(3):240-248
In this study the anti-oxidant effect of DHEA and 7alpha-hydroxy-DHEA against oxidative stress induced by colitis was investigated in vivo in rats. The two steroids were intraperitoneally injected once daily (50 mg/kg body weight) for 7 days before the induction of colitis that was effected by a daily treatment of 5% (w/v) dextran sodium sulfate (DSS) in drinking water for 7 days. This was quantified by the evidence of weight loss, rectal bleeding, increased wall thickness, and colon length. The inflammatory response was assessed by neutrophil infiltration after a histological examination and myeloperoxidase (MPO) activity measurement. Two markers of oxidative damage were measured in colon homogenates after the onset of DSS treatment: protein carbonyls and thiobarbituric acid-reacting substances. The colonic metabolism of corticosterone by 11beta-hydroxysteroid dehydrogenases types 1 and 2 (11beta-HSD) was investigated in control and treated animals. Results indicated that colitis caused a decrease in body weight and colon length. Severe lesions were observed in the colon with a reduced number of goblet cells which contained less mucins. The lesions were associated with increased MPO activity and oxidative damage. Colonic inflammation down and up regulated the 11beta-HSD2 and 11beta-HSD1, respectively. Treatments by DHEA and 7alpha-hydroxy-DHEA attenuated the inflammatory response when MPO activity decreased; but this did not increase the colonic oxidation of corticosterone into 11-dehydrocorticosterone. Both DHEA and 7alpha-hydroxy-DHEA exerted a significant anti-oxidant effect against oxidative stress induced by colitis through reducing the oxidative damage to proteins and lipids. This resulted in a moderate increase in the amount of colonic mucus. Both DHEA and 7alpha-hydroxy-DHEA may prove useful in the prevention or treatment of colitis.  相似文献   

4.
Catechins have a great variety of biological actions. We evaluated the potential benefits of catechin ingestion on muscle contractile properties, oxidative stress, and inflammation following downhill running, which is a typical eccentric exercise, in senescence-accelerated prone mice (SAMP). Downhill running (13 m/min for 60 min; 16° decline) induced a greater decrease in the contractile force of soleus muscle and in Ca(2+)-ATPase activity in SAMP1 compared with the senescence-resistant mice (SAMR1). Moreover, compared with SAMR1, SAMP1 showed greater downhill running-induced increases in plasma CPK and LDH activity, malondialdehyde, and carbonylated protein as markers of oxidative stress; and in protein and mRNA expression levels of the inflammatory mediators such as tumor necrosis factor-α and monocyte chemoattractant protein-1 in muscle. SAMP1 exhibited aging-associated vulnerability to oxidative stress and inflammation in muscle induced by downhill running. Long-term (8 wk) catechin ingestion significantly attenuated the downhill running-induced decrease in muscle force and the increased inflammatory mediators in both plasma and gastrocnemius muscle. Furthermore, catechins significantly inhibited the increase in oxidative stress markers immediately after downhill running, accompanied by an increase in glutathione reductase activity. These findings suggest that long-term catechin ingestion attenuates the aging-associated loss of force production, oxidative stress, and inflammation in muscle after exercise.  相似文献   

5.
Dendritic cells (DCs) are essential mediators of the host immune response to surrounding microbes. In this study, we investigate the role of DCs in the pathogenesis of a widely used colitis model, dextran sulfate sodium-induced colitis. The effect of dextran sulfate sodium on the production of proinflammatory cytokines and chemokines by bone marrow-derived DCs (BM-DCs) was analyzed. BM-DCs were adoptively transferred into C57BL/6 mice or DCs were ablated using transgenic CD11c-DTR/GFP mice before treatment with 5% dextran sulfate sodium in drinking water. We found that dextran sulfate sodium induced production of proinflammatory cytokines (IL-12 and TNF-alpha) and chemokines (KC, MIP-1alpha, MIP-2, and MCP-1) by DCs. Adoptive transfer of BM-DCs exacerbated dextran sulfate sodium colitis while ablation of DCs attenuated the colitis. We conclude that DCs are critical in the development of acute dextran sulfate sodium colitis and may serve a key role in immune balance of the gut mucosa.  相似文献   

6.
Whereas a number of studies have examined the effects of soy isoflavones and tocopherols on colonic inflammation, few have examined soy protein. We determined the radical scavenging and cytoprotective effects of soy protein concentrate (SPC) in vitro and its anti-inflammatory effects in dextran sulfate sodium (DSS)-treated mice. Cotreatment with SPC protected Caco-2 human colon cells from H2O2-induced cell death and mitigated intracellular oxidative stress. Treatment of differentiated Caco-2 cells with SPC blunted DSS-induced increases in monolayer permeability. Pepsin/pancreatin-digested SPC had reduced radical scavenging activity, but retained the monolayer protective effects of SPC. In vivo, 1.5% DSS caused body weight loss, colon shortening, and splenomegaly in CF-1 mice. Co-treatment with 12% SPC mitigated DSS-induced body weight loss and splenomegaly. DSS increased colonic interleukin (IL)-1β, IL-6, and monocyte chemotactic protein-1 expression. The levels of these markers were significantly lower in mice co-treated with SPC. SPC prevented DSS-mediated reductions in colonic glucagon-like peptide 2 levels, suggesting that SPC can prevent loss of gut barrier function, but no significant effect on claudin 1 and occludin mRNA levels of was observed. SPC-treated mice had lower colonic mRNA expression of toll-like receptor 4 and nucleotide-binding oligomerization domain-containing protein-like receptor family, pyrin domain containing protein 3 (NLRP3), and lower caspase-1 enzyme activity than DSS-treated mice. In summary, SPC exerted antioxidant and cytoprotective effects in vitro and moderated the severity of DSS-induced inflammation and loss of gut barrier function in vivo. These effects appear to be mediated in part through reduced NLRP3 expression and caspase 1 activity.  相似文献   

7.

Background  

Human immune cells generate large amounts of reactive oxygen species (ROS) throughout the respiratory burst that occurs during inflammation. In inflammatory bowel diseases, a sustained and abnormal activation of the immune system results in oxidative stress in the digestive tract and in a loss of intestinal homeostasis. We previously showed that the heterologous production of the Lactobacillus plantarum ATCC14431 manganese-dependant catalase (MnKat) in Lb. casei BL23 successfully enhances its survival when exposed to oxidative stress. In this study, we evaluated the preventive effects of this antioxidative Lb. casei strain in a murine model of dextran sodium sulfate (DSS)-induced moderate colitis.  相似文献   

8.
Among the heart diseases, ischemia and reperfusion (I/R) induced arrhythmias contribute to episodes of sudden death. Cardiac arrhythmias during ischemia reperfusion are believed to be related to oxidative stress. Therefore, the aim of this study was to examine whether treatment with Hesperidin alleviates arrhythmias and infarct size in experimentally-induced myocardial I/R injury using an in vivo rat model. In this study haemodynamics parameters, markers of inflammation, biomarkers of oxidative stress and tissue nitrite level and infarct size of the heart were estimated in various groups. I/R showed a significant decrease in tissue nitrite and antioxidant level and significant increase in arrhythmias, inflammation and myocardial cell apoptosis. Treatment with Hesperidin showed a significant increase in tissue nitrite, antioxidant level and reduction in inflammation, arrhythmias and apoptosis. In conclusion, the protecting effect of Hesperidin in I/R induced arrhythmias is due to reduction in inflammation and oxidative stress.  相似文献   

9.
Conventional therapies for the treatment of inflammatory bowel disease (IBD) have demonstrated limited efficacy and potential toxicity; therefore, there is a need for novel therapies that can safely and effectively treat IBD. Recent evidence has indicated that amino acids may play a role in maintaining gut health. l-Tryptophan has been shown to reduce oxidative stress and improve neurological states. The objective of this study was to assess the therapeutic effects of l-tryptophan in a porcine model of dextran sodium sulfate (DSS)-induced colitis. DSS was administered to piglets via intragastric catheter for 5 days followed by tryptophan administration at 80% of the daily recommended intake. The severity of colitis was assessed macroscopically and histopathologically, and intestinal permeability was monitored in vivo by d-mannitol analysis. The effect of tryptophan on the local expression of key mediators of inflammation and IBD pathogenesis was examined at the protein and gene expression levels. Supplementation with tryptophan ameliorated clinical symptoms and improved weight gain to feed intake conversion ratios. Histological scores and measurements were also improved, and gut permeability was notably reduced in tryptophan-supplemented animals. Moreover, tryptophan reduced the expression of the pro-inflammatory cytokines tumor necrosis factor-α, interleukin (IL)-6, interferon (IFN)-γ, IL-12p40, IL-1β and IL-17, as well as IL-8 and intracellular adhesion molecule-1, and resulted in increased expression of apoptosis initiators caspase-8 and Bax. These results demonstrate that l-tryptophan supplementation can reduce inflammation and enhance the rate of recovery in DSS-induced colitis and may be an effective immunomodulating agent for the treatment of IBD.  相似文献   

10.
Fatty liver disease is a disease manifested with excessive alcohol intake and obese. Importantly, hydrogen sulfide (H2S) has been revealed to participate in the progression of fatty liver; however, the underlying mechanism has not been clearly elucidated yet. In this study, we aimed to investigate the effects of exogenous H2S on fatty liver ischemia–reperfusion injury (IRI) through mediating class A scavenger receptor (SRA) pathway in rats. By determining endoplasmic reticulum stress (ERS)‐related factors, autophagy markers and apoptosis‐related factors in liver tissue and liver function, levels of oxidative stress, inflammatory factors, and hepatocyte apoptosis, the effects of H2S on IRI‐induced autophagy, oxidative stress, and inflammation were all examined in rat model of fatty liver IRI. Results from obtained data showed that H2S decreased the expression of SRA, Grp78, PERK, CHOP, and Caspase‐3, and increased that of LC3‐II/LC3‐I, in addition to alleviating the pathological changes of liver and reducing the levels of ALT, AST, LDH TBARS, and MDA. Moreover, H2S decreased the levels of oxidative stress, the expression of pro‐inflammatory factors including tumor necrosis factor α, interleukin 1, and interleukin 6, and the apoptosis of hepatocytes. Our findings suggested exogenous H2S could reduce ERS by mediating the SRA pathway and protect liver function by inducing autophagy, and protect against IRI by reducing oxidative stress and inflammation.  相似文献   

11.
The exact mechanism of gut dysfunction in Parkinson’s disease and, conversely, the role of gut pathology in brain dopaminergic degeneration are controversial. We investigated the effects of nigral lesions on the colonic neurotransmission, the effect of gut inflammation on the nigrostriatal dopaminergic function, and the possible involvement of the vagus nerve and the local renin-angiotensin system (RAS). Nigrostriatal dopamine depletion was performed by bilateral injection 6-hydroxydopamine, and gut inflammation was induced by dextran sulfate sodium salt treatment in rats and mice, respectively, with or without vagal disruption. A decrease in central dopamine levels induced a decrease in colonic dopamine types 1 and 2 receptor expression together with an increase in the colonic levels of dopamine and a decrease in the levels of acetylcholine, which may explain a decrease in gut motility. Central dopaminergic depletion also induced an increase in the colonic levels of inflammatory and oxidative stress markers together with activation of the pro-inflammatory arm of the local RAS. Mice with acute (1 week) or subchronic (3 weeks) gut inflammation did not show a significant increase in colonic α-synuclein and phosphorylated α-synuclein expression during this relatively short survival period. Interestingly, we observed early changes in the nigrostriatal dopaminergic homeostasis, dopaminergic neuron death, and increased levels of nigral pro-inflammatory markers and RAS pro-inflammatory activity. The present results show that a dysregulation of the neural bidirectional gut-brain interaction may explain the early gut disturbances observed in parkinsonian patients, and also the increase in vulnerability of nigral dopaminergic neurons after gut inflammation.  相似文献   

12.
Inflammation and oxidative stress are believed to contribute to hypertension in obesity/diabetes. Recently, we reported a role for the AT(2) receptor in blood pressure control in obese Zucker rats. However, the role of AT(2) receptors in inflammation and oxidative stress in obesity is not known. Therefore, in the present study, we tested the effects of the AT(2) receptor agonist CGP-42112A on inflammation and oxidative stress in obese Zucker rats and compared them in their lean counterparts. Rats were systemically treated with either vehicle (control) or CGP-42112A (1 μg·kg(-1)·min(-1); osmotic pump) for 2 wk. Markers of inflammation (CRP, MCP-1, TNF-α, and IL-6) and oxidative stress (HO-1, gp-91(phox)) as well as an antioxidant (SOD) were determined. Control obese rats had higher plasma levels of CRP, MCP-1, TNF-α, IL-6, and HO-1 compared with control lean rats. Conversely, plasma SOD activity was lower in control obese than in control lean rats. Furthermore, the protein levels of TNF-α and gp-91(phox) were higher in the kidney cortex of control obese rats. Interestingly, CGP-42112A treatment in obese rats reduced the plasma and kidney cortex inflammatory (TNF-α, IL-6) and oxidative stress (gp-91(phox)) markers and increased plasma SOD activity to the levels seen in lean control rats. However, CGP-42112A treatment in lean rats increased inflammatory (TNF-α, IL-6) and oxidative stress (gp-91(phox)) markers in the plasma and kidney cortex. Our present studies suggest anti-inflammatory and antioxidative functions of AT(2) receptor in obese Zucker rats but proinflammatory and prooxidative functions in lean Zucker rats.  相似文献   

13.

Background

Transient global cerebral ischemia/reperfusion (I/R) is a major perioperative complication, and diabetes increases the response of oxidative stress and inflammation induced by I/R. The objective of this study was to determine the protective effect of dexmedetomidine against transient global cerebral ischemia/reperfusion induced oxidative stress and inflammation in diabetic rats.

Methods

Sixty-four rats were assigned into four experimental groups: normoglycemia, normoglycemia + dexmedetomidine, hyperglycemia, and hyperglycemia + dexmedetomidine and all subsequent neurological examinations were evaluated by a blinded observer. Damage to the brain was histologically assessed using the TUNEL staining method while western blotting was used to investigate changes in the expression levels of apoptosis-related proteins as well as the microglia marker, ionized calcium-binding adapter molecule 1 (Iba1). Water content in the brain was also analyzed. In addition, hippocampal concentrations of malondialdehyde (MDA) and Nox2 (a member of the Nox family of NADPH oxidases), and the activity of superoxide dismutase and catalase were analyzed. Finally, changes in serum concentrations of tumor necrosis factor-α (TNF-α) and interleukin (IL)-6 were detected.

Results

Results showed that diabetes increased brain water content, the number of apoptotic neurons, early neurological deficit scores, oxidative stress (MDA and Nox2) and inflammation (pro-inflammatory cytokines including TNF-α and IL-6) levels following transient global I/R injury, but that these symptoms were attenuated following administration of dexmedetomidine.

Conclusions

These findings suggest that dexmedetomidine can significantly alleviate damage resulting from I/R, and this mechanism may be related to a reduction in both oxidative stress and inflammation which is normally associated with I/R.  相似文献   

14.
Absence of stearoyl-CoA desaturase-1 (SCD1) in mice leads to chronic inflammation of the skin and increased susceptibility to atherosclerosis, while also increasing plasma inflammatory markers. A recent report suggested that SCD1 deficiency also increases disease severity in a mouse model of inflammatory bowel disease, induced by dextran sulfate sodium (DSS). However, SCD1-deficient mice are known to consume increased amounts of water, which would also be expected to increase the intake of DSS-treated water. The aim of this study was to determine the effect of SCD1 deficiency on DSS-induced acute colitis with DSS dosing adjusted to account for genotype differences in fluid consumption. Wild-type controls were treated with 3.5% DSS for 5 days to induce moderately severe colitis, while the concentration of DSS given to SCD1-deficient mice was lowered to 2.5% to control for increased fluid consumption. Colonic inflammation was assessed by clinical and histological scoring. Although SCD1-deficient mice consumed a total intake of DSS that was greater than that of wild-type controls, colonic inflammation, colon length and fecal blood were not altered by SCD1-deficiency in DSS-induced colitis, while diarrhea and total weight loss were modestly improved. Despite SCD1 deficiency leading to chronic inflammation of the skin and increased susceptibility to atherosclerosis, it does not accelerate inflammation in the DSS-induced model of acute colitis when DSS intake is controlled. These observations suggest that SCD1 deficiency does not play a significant role in colonic inflammation in this model.  相似文献   

15.

Background

Contrast echocardiography is a precise tool for the non-invasive assessment of myocardial function and perfusion. Side effects of contrast echocardiography resulting from contrast-agent induced myocardial micro-lesions have been found in animals. The goal of this study is to measure markers of myocardial necrosis, inflammation and oxidative stress in humans to evaluate potential side-effects of contrast echocardiography.

Methods

20 patients who underwent contrast echocardiography with Optison as the contrast medium were investigated. To evaluate myocardial micro-necrosis, inflammation and oxidative stress, cardiac troponin I (cTnI), tumor necrosis factor-α (TNF-α), interleukin (IL)-6, -8 and thiobarbituric acid reactive substances (TBARS) were measured at baseline and at 2, 4, 8 and 24 hours after contrast echocardiography.

Results

At baseline, 50% of the patients had cTnI and TBARS values outside the reference range. TNF-α, IL-6, IL-8 levels were within the reference range. Patients with cTnI above the RR clustered to significantly higher levels of TNF-α and IL-6. After contrast echocardiography, no statistically significant increase of cTnI, cytokines and TBARS was found. However, for nearly 50% of the patients, the intra-individual cTnI kinetics crossed the critical difference (threefold of methodical variation) which indicates a marker increase. This was neither predicted by the baseline levels of the cytokines nor the markers of oxidative stress.

Conclusion

There are no clinically relevant increases in serum markers for micro-necrosis, inflammation and oxidative stress in humans after contrast echocardiography. Future studies have to address whether cTnI increase in some patients represent a subset with increased risk for side effects after contrast echocardiography.  相似文献   

16.
In this study, we investigated the in vitro effect of tomentosin on cell proliferation by 3‐(4,5‐dimethylthiazol‐2‐yl)‐2,5‐diphenyltetrazolium bromide assay, reactive oxygen species by 2′,7′‐dichlorofluorescein diacetate staining assay, apoptosis (AO/EtBr, propidium iodide, and 4′,6‐diamidino‐2‐phenylindole staining, mitochondrial membrane potential), cell adherent, cell migration, inflammation, apoptosis, and oxidative stress from gastric cancer cells (GCCs) AGS. Upon their relative cell proliferative, inflammatory, and apoptotic molecular markers were analyzed by using the enzyme‐linked immunosorbent assay and Western blot analysis method. Treatment with tomentosin (IC50 = 20 µM) significantly inhibited cell proliferation and oxidative stress‐induced anti‐cell proliferative (proliferating cell nuclear antigen and cyclin‐D1) also regulated expression, drastically diminished tumor necrosis factor‐α, nuclear factor‐κB, interleukin‐6, and interleukin‐1β expression levels, significantly upregulated Bcl‐2 and Bax expression. Thus, this tomentosin can significantly reduce GCC proliferation via cytotoxicity which is stimulated apoptosis markers via morphology staining changes and inhibitory inflammatory markers. The tomentosin‐induced oxidative stress may be involved to stimulate apoptotic mechanisms via mitochondria‐mediated signaling by the inhibition of inflammation. Taken together, our findings suggest a possible future use of chemotherapeutic agents for pharmacological benefits and as an anti‐cancer treatment option.  相似文献   

17.
Inflammatory bowel disease (IBD) is a disease caused by a dysregulated immune with unknown etiology. Hericium erinaceus (H. erinaceus) is a Chinese medicinal fungus, with the effect of prevention and treatment of gastrointestinal disorders. In this study, we have tested the anti-inflammatory effect of polysaccharide of H. erinaceus (HECP, Mw: 86.67 kDa) in the model of dextran sulfate sodium (DSS)-induced colitis in C57BL/6 mice. Our data indicated that HECP could improve clinical symptoms and down-regulate key markers of oxidative stresses, including nitric oxide (NO), malondialdehyde (MDA), total superoxide dismutase (T-SOD), and myeloperoxidase (MPO). HECP also suppressed the secretion of interleukin (IL)-6, interleukin (IL)-1β, tumor necrosis factor (TNF)-α and the expression of cyclooxygenase-2 (COX-2), inducible nitric oxide synthase (iNOS) and decreased the expression of related mRNA. Meanwhile, HECP blocked phosphorylation of nuclear factor-κB (NF-κB) p65, NF-κB inhibitor alpha (IκB-α), mitogen-activated protein kinases (MAPK) and Protein kinase B (Akt) in DSS-treated mice. Moreover, HECP reversed DSS-induced gut dysbiosis and maintained intestinal barrier integrity. In conclusion, HECP ameliorates DSS-induced intestinal injury in mice, which suggests that HECP can serve as a protective dietary nutrient against IBD.  相似文献   

18.
The nature of interaction between dextran sulfate and the human plasma low density lipoproteins of Sf 0–10 was investigated in high density media of glycine and glucose. The soluble complex formation between the two components was manifested by sedimentation of the lipoproteins along with dextran sulfate in the glycine and glucose media of density 1.063. The addition of sodium chloride to the mixture caused dissociation of the complex: during subsequent ultracentrifugation, flotation of lipoprotein and sedimentation of dextran sulfate occurred. However, when the complex is in the acidic glycine medium (pH 4.0), the addition of sodium chloride did not induce dissociation of the complex.

Both the solubility and the size of the complex were greatly influenced by the ratio of the two components in solution. At low relative concentrations of dextran sulfate, insoluble aggregates were formed; but the aggregates disintegrated into soluble units upon increasing the dextran sulfate concentrations. From the sedimentation patterns of dextran sulfate lipoprotein mixtures at various ratios, it was possible to estimate the ratio of the two components in the complex. In the presence of excess dextran sulfate a composite biphasic Schlieren diagram was produced as a result of the unusual Johnston-Ogston effect.  相似文献   

19.
Recent studies suggest that the common variant in the GSTM1 and GSTT1 genes modifies the risk of coronary artery disease (CAD), however, it is unclear whether the risk of CAD modulated by variants in the GSTM1 and GSTT1 genes was associated with alterations of indices of oxidative stress and inflammation. Our study is an attempt to provide insight into the role of GST genetic variant and markers of oxidative stress and inflammation in CAD patients. A total of 719 Chinese CAD patients were successfully genotyped. Plasma total antioxidant status (TAOS), glutathione(GSH), C-reactive protein (CRP), fibrinogen (FIB) and white blood cell count (WBC) were determined to evaluate the oxidative stress and inflammatory response. The correlations between GSTM1/GSTT1 genotypes and alterations of indices of oxidative stress and inflammation were analyzed. We found GSTM1-0/GSTT1-0 subjects had higher CRP and FIB and lower TAOS compared to patients with wild-type GSTM1/GSTT1 genes. A stepwise elevations in age, the incidences of hypertension and diabetes mellitus, levels of FIB and the number of WBC were associated with increased number of stenosed vessels. Reductions of plasma TAOS and GSH were associated with increased number of stenosed vessels. Our results suggest that GST polymorphisms maybe modify the effect on markers of oxidative stress and inflammation in Chinese CAD patients.  相似文献   

20.
Gefitinib (GEF) is an inhibitor of the epidermal growth factor receptor, linked to higher risk of severe/fatal interstitial lung disease (ILD). This study was performed to determine the protective roles of an angiotensin-II type-1 receptor (AT1R) “valsartan (VAL)” in prevention of lung inflammation, oxidative stress and metabolites alteration induced by GEF. Four groups of male Wistar albino rats were received vehicle, VAL (30 mg/kg), GEF (30 mg/kg), or both for four weeks. Blood samples and lungs were harvested for plasma metabolites and histological analysis, respectively, and evaluation of inflammation and oxidative stress. GEF monotherapy showed a dense inflammation in lungs, and significantly increased tumor necrosis factor-α (P = 0.0349), interleukin-6 (P < 0.0001), chemokine ligand-3 (P = 0.0420), and interleukin-1β (P = 0.0377). GEF increased oxidative stress markers including glutathione, malondialdehyde, and catalase levels. Also, several plasma metabolites including butanoic acid, N-methylphenylethanolamine, oxalic acid, l-alanine, phosphoric acid, l-theorinine, pyroglutamic acid, and 2-bromosebacic acid were changed by GEF. The combination of VAL plus GEF reduced the inflammation and oxidative stress mediated by GEF monotherapy. In addition, the combination treatment returned plasma metabolites to the normal levels compared to GEF monotherapy. These findings revealed that VAL has a possible pulmonary protective role against pulmonary toxicity of GEF, which may lead to novel approaches for management of GEF-induced ILD.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号