首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Rat liver Golgi apparatus are shown to have a CMP-N-acetylneuraminate: N-acetylglucosaminide (alpha 2----6)-sialyltransferase which catalyzes the conversion of the human milk oligosaccharide LS-tetrasaccharide-a (NeuAc alpha 2----3Gal beta 1---- 3GlcNAc beta 1----3Gal beta 1----4Glc) to disialyllacto -N- tetraose containing the terminal sequence: (formula: see text) found in N-linked oligosaccharides of glycoproteins. The N-acetylglucosaminide (alpha 2----6)-sialyltransferase has a marked preference for the sequence NeuAc alpha 2----3-Gal beta 1---- 3GlcNAc as an acceptor substrate. Thus, the order of addition of the two sialic acids in the disialylated structure shown above is proposed to be first the terminal sialic acid in the NeuAc alpha 2----3Gal linkage followed by the internal sialic acid in the NeuAc alpha 2---- 6GlcNAc linkage. Sialylation in vitro of the type 1 branches (Gal beta 1---- 3GlcNAc -) of the N-linked oligosaccharides of asialo prothrombin to produce the same disialylated sequence is also demonstrated.  相似文献   

2.
Biosynthesis of the c-series gangliosides GT3, GT2 and GP1c was studied in Golgi derived from rat liver. Competition experiments show that the synthesis of ganglioside GT2 (GalNAc beta 1----4-(NeuAc alpha 2----8NeuAc alpha 2----8NeuAc alpha 2----3)Gal- beta 1----4Glc beta 1----1Cer) from GT3 (NeuAc alpha 2----8NeuAc alpha 2----8-NeuAc alpha 2----3Gal beta 1----4Glc beta 1----1Cer) seems to be catalysed by the same N-acetylgalactosaminyl-transferase (GalNAc-T), which converts GM3 (NeuAc alpha 2----3Gal beta 1----4Glc beta 1----1Cer) to GM2 (GalNAc beta 1----4(NeuAc alpha 2----3)Gal beta 1----4Glc beta 1----1Cer). Similar competition experiments suggest moreover that the sialytransferase V (SAT V), which catalyses the synthesis of GT1a (NeuAc alpha 2----8NeuAc alpha 2----3Gal beta 1----3GalNAc beta 1----4- (NeuAc alpha 2----3)-Gal beta 1----4Glc beta 1----1Cer) from GD1a (NeuAc alpha-2----3Gal beta 1----3GalNAc beta 1----4(NeuAc alpha 2----3)Gal beta 1----4Glc beta 1----1-Cer) appears to be identical to the enzyme that catalyses the synthesis of GP1c (NeuAc alpha 2----8NeuAc alpha 2----3Gal beta 1----3-GalNAc beta 1----4(NeuAc alpha 2----8-NeuAc alpha 2----8NeuAc alpha 2----3)Gal beta-1----4Glc beta 1----4Glc beta 1----1Cer) from GQ1c (NeuAc alpha 2----3Gal beta 1----3Gal-NAc beta 1----4 (NeuAc alpha 2----8NeuAc alpha 2----8NeuAc alpha 2----3)Gal beta 1----4-Glc beta 1----1Cer).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
E Berman 《Biochemistry》1984,23(16):3754-3759
The analysis of the carbon-13 chemical shift data of NeuAc alpha (2----3)Gal beta (1----4)Glc and NeuAc alpha (2----3)Gla beta-(1----4)GlcNAc and their respective NeuAc alpha (2----6) isomers established distinct and different conformations of the sialic acid residue, depending on the type of anomeric linkage [alpha-(2----3) vs. alpha (2----6)]. Interactions between the NeuAc residue and the Glc or GlcNAc residue are particularly strong in the case of the alpha (2----6) isomers. Similar effects are observed for the larger oligosaccharides [II3(NeuAc)2Lac and IV6NeuAcLcOse4] and even in intact glycoproteins and polysaccharides. It is proposed that the NeuAc alpha (2----3) isomers assume an extended conformation with the sialic residue at the end (terminal) of the oligosaccharide chain or branch. The NeuAc alpha (2----6) isomers are assumed to be folded back toward the inner core sugar residues.  相似文献   

4.
Siglec-7 is a sialic acid-binding lectin recently identified as an inhibitory receptor on natural killer cells. Here we characterize the sugar-binding specificity of Siglec-7 expressed on Chinese hamster ovary cells using polyvalent streptavidin-based glyco-probes. Glyco-probes carrying unique oligosaccharide structures such as GD3 (NeuAc alpha 2,8NeuAc alpha 2,3Gal beta 1,4Glc) and LSTb (Gal beta 1,3[NeuAc alpha 2,6]GlcNAc beta 1,3Gal beta 1,4Glc) oligosaccharides bound to Siglec-7 better than those carrying LSTc (NeuAc alpha 2,6Gal beta 1,4GlcNAc beta 1,3Gal beta 1,4Glc) or GD1a (NeuAc alpha 2,3Gal beta 1,3GalNAc beta 1,4[NeuAc alpha 2,3]Gal beta 1,4Glc) oligosaccharides. In contrast, Siglec-9, which is 84% identical to Siglec-7, did not bind to the GD3 and LSTb probes but did bind to the LSTc and GD1a probes. To identify a region(s) responsible for their difference in binding specificity, we prepared a series of V-set domain chimeras between Siglecs-7 and -9. Substitution of a small region, Asn(70)-Lys(75), of Siglec-7 with the equivalent region of Siglec-9 resulted in loss of Siglec-7-like binding specificity and acquisition of Siglec-9-like binding properties. In comparison, a Siglec-9-based chimera, which contains Asn(70)-Lys(75) with additional amino acids derived from Siglec-7, exhibited Siglec-7-like specificity. These results, combined with molecular modeling, suggest that the C-C' loop in the sugar-binding domain plays a major role in determining the binding specificities of Siglecs-7 and -9.  相似文献   

5.
A sialic acid-binding lectin with high specificity for 9-O-acetyl- and 4-O-acetylsialic acids was purified from the hemolymph of the California coastal crab, Cancer antennarius, by affinity chromatography using bovine submaxillary mucin coupled to agarose. The binding specificity of the crab lectin distinguishes it from other known sialic acid-specific lectins from Limulus polyphemus and Limax flavus which show a broader range of specificity for sialic acids. The purified lectin is homogenous on sodium dodecyl sulfate-polyacrylamide electropherograms with a subunit molecular weight of about 36 kDa. The specificity of the lectin for O-acetylsialic acids appears to account for the fact that it agglutinates mouse, rat, rabbit, and horse erythrocytes, which contain O-acetylsialic acids on cell surface glycoconjugates, but not human monkey, sheep, goat, and chicken erythrocytes which contain only NeuAc or N-glycolylneuraminic acid (NeuGc). This conclusion was supported by the potent inhibition of hemagglutination by bovine and equine submaxillary mucins which contain 9(7,8)-O-acetyl- and 4-O-acetylsialic acids, respectively, and also by free 9-O-acetyl-N-acetylneuraminic acid (9-O-Ac-NeuAc) and 4-O-Ac-NeuAc relative to NeuAc and NeuGc. Further support for the role of O-Ac-sialic acids in hemagglutination of erythrocytes was obtained by enzymatic modification of human erythrocytes. Sialidase-treated erythrocytes were resialylated with purified sialyltransferases and various CMP-sialic acid donor substrates to contain NeuAc or NeuGc or 9-O-Ac-NeuAc in the Sia alpha 2,3Gal or Sia alpha 2,6Gal linkages. Cells resialylated to contain NeuAc or NeuGc were not agglutinated, but cells resialylated to contain 9-O-Ac-NeuAc were agglutinated with high titer, comparable to that of mice or horse erythrocytes.  相似文献   

6.
A lectin (Amaranthin) present in the seeds of Amaranthus caudatus has been isolated by fractionation on DEAE-cellulose followed by affinity chromatography on Synsorb-T beads (Gal beta 1,3GalNAc alpha-O-R-Synsorb). The lectin appeared homogeneous by gel electrophoresis at pH 4.3 and gave a single protein band by sodium dodecyl sulfate-polyacrylamide gel electrophoresis with Mr = 33,000-36,000. A native Mr = 54,000 was determined by gel filtration suggesting that amaranthin exists as a homodimer. Compositional analysis revealed high amounts of acidic and hydroxyamino acids and relatively large amounts of lysine, methionine, and tryptophan for a plant protein. Amaranthin formed a precipitate with asialo-bovine submaxillary mucin, asialo-ovine submaxillary, porcine submaxillary mucin, asialo-fetuin and asialoglycophorin. Hapten inhibition of precipitate formation between amaranthin and asialo-ovine submaxillary indicated that the T-disaccharide and its alpha-linked glycosides (Gal beta 1,3GalNAc alpha-O-R; R = OH, methyl, -(CH2)8-COOCH3, allyl, o-nitrophenyl, or benzyl) were the best inhibitors. N-Acetylgalactosamine, the only monosaccharide which inhibited precipitation, was 350-fold less effective than Gal beta 1,3GalNAc alpha-O-R. Hapten inhibition with derivatives of the T-disaccharide suggested that the C'-4 axial hydroxyl group of the galactosyl moiety, and the C-4 axial hydroxyl group, and the C-2 acetamido group of the GalNAc unit are the most important loci for lectin interaction. NeuAc alpha 2,3Gal beta 1,3GalNAc alpha-O-(CH2)8CO2CH3 was as potent an inhibitor as Gal beta 1,3GalNAc alpha-O-(CH2)8CO2-CH3, and amaranthin was precipitated by NeuAc alpha 2,3Gal beta 1,3GalNAc alpha-O-BSA (where BSA is bovine serum albumin), indicating that the amaranthin-combining site tolerates substitutions at the C'-3 hydroxyl group. Amaranthin was precipitated by a Gal beta 1,3GalNAc alpha-O-BSA glycoconjugate but not by the anomeric Gal beta 1,3GalNAc beta-O-BSA glycoconjugate illustrating that the disaccharide must be linked alpha in order to interact with the lectin. Metal ions do not appear to be required for lectin activity. A study of pH dependence showed significant precipitate formation between pH 4 to 9 with a maximum at pH 5. Hapten inhibition and glycoconjugate precipitation assays were also conducted for peanut (Arachis hypogaea) agglutinin. A comparison between the carbohydrate-binding specificities of amaranthin and peanut (Arachis hypogaea) agglutinin is discussed.  相似文献   

7.
In this study we have investigated the structures of five sialylated trisaccharides released from bovine submaxillary mucin by alkaline borohydride treatment and isolated by high-performance liquid chromatography. Three of the trisaccharides contained NeuAc while two contained NeuGc. One oligosaccharide contained core-type 1, two contained core-type 3 and two contained core-type 5. The structures, determined by a combination of one- and two-dimensional 1H-NMR spectroscopy at 270 MHz and methylation analysis involving gas-liquid chromatography/mass spectrometry, were as follows: A4b, GalNAc alpha(1----3) [NeuAc alpha(2----6)]GalNAcol; A4c, GlcNAc beta(1----3)[NeuAc alpha(2----6)]GalNAcol; A4d, Gal beta(1----3)[NeuAc alpha(2----6)]GalNAcol; A4e, GalNAc alpha(1----3)-[NeuGc alpha(2----6)]GalNAcol; A4f, GlcNAc beta(1----3)[NeuGc alpha (2----6)]GalNAcol. The oligosaccharides occurred in the approximate molar ratios 1.0:12.0:0.3:0.2:2.0. This is the first report of oligosaccharides containing core-type 5 and of the occurrence of oligosaccharides A4b, A4e, and A4f in bovine submaxillary mucin. 1H-NMR data for structure A4e, which is a novel structure, are presented for the first time.  相似文献   

8.
We recently reported that the purified leukoagglutinin (designated MAL) from the seeds of the leguminous plant Maackia amurensis is a potent leukoagglutinin for the mouse lymphoma cell line BW5147 (Wang, W.-C., and Cummings, R. D. (1987) Anal. Biochem. 161,80). We and others have shown that this lectin is a weak hemagglutinin of human erythrocytes (Kawaguchi, T., Matsumoto, I., and Osawa, T. (1974) J. Biol. Chem. 249, 2786). We now report that leukoagglutination by MAL is inhibited by low concentrations of 2,3-sialyllactose (NeuAc alpha 2,3Gal beta 1,4Glc), but it is not inhibited by either 2,6-sialyllactose (NeuAc alpha 2,6Gal beta-1,4Glc), lactose, or free NeuAc. To further study the carbohydrate-binding specificity of this lectin, we investigated the interactions of immobilized MAL with glycopeptides prepared from the mouse lymphoma cell line BW5147 and from purified glycoproteins. We found that immobilized MAL interacts with high affinity with complex-type tri- and tetraantennary Asn-linked oligosaccharides containing outer sialic acid residues linked alpha 2,3 to penultimate galactose residues. Glycopeptides containing sialic acid linked only alpha 2,6 to penultimate galactose did not interact detectably with the immobilized lectin. Our analyses indicate that the interactions of complex-type Asn-linked chains with the lectin are dependent on sialic acid linkages and are not dependent on either the branching pattern of the mannose residues or the presence of poly-N-acetyllactosamine sequences.  相似文献   

9.
The sialyloligosaccharide, NeuAc alpha 2-3Gal beta 1-3GlcNAc beta 1-3Gal beta 1-4Glc (LS-tetrasaccharide a), a minor component of human milk, is obtained in relatively large quantities from autohydrolysates of the major milk disialyloligosaccharide, NeuAc alpha 2-3Gal beta 1-3[NeuAc alpha 2-6]GlcNAc beta 1-3Gal beta 1-4Glc (disialyllacto-N-tetraose). Rabbits immunized with an oligosaccharide-protein conjugate prepared from keyhole limpet hemocyanin and LS-tetrasaccharide a produce antibodies directed against the corresponding oligosaccharide alditol. The anti-LS-tetrasaccharide a sera bind 3H-labeled LS-tetrasaccharide a in a direct-binding radioimmunoassay on nitrocellulose filters. The specificities of these antibodies are determined by comparing inhibitory activities of structurally related oligosaccharides. Strong hapten-antibody binding (Ka greater than 10(6) M-1) requires sialic acid linked alpha 2-3 to the nonreducing terminal galactose residue of reduced lacto-N-tetraose (Gal beta 1-3GlcNAc beta 1-3Gal beta 1-4GlcOH). Specificities of antibodies prepared against keyhole limpet hemocyanin conjugates of LS-tetrasaccharide b (Gal beta 1-3[NeuAc alpha 2-6]GlcNAc beta 1-3Gal beta 1-4Glc) and LS-tetrasaccharide c (NeuAc alpha 2-6Gal beta 1-4GlcNAc beta 1-3Gal beta 1-4Glc) differ only slightly from rabbit antibodies prepared against the corresponding bovine serum albumin conjugates described previously [D. F. Smith and V. Ginsburg (1980) J. Biol. Chem. 255, 55-59].  相似文献   

10.
Two gangliosides, representing 85% of total lipid-bound sialic acid, have been isolated from bovine buttermilk and characterized. Both contained long-chain base, glucose, galactose and sialic acid in the molar ratio 1:1:1:2, and gave, upon sialidase treatment, a neutral glycolipid, characterized as lactosylceramide. Partial acid hydrolysis, permethylation analysis and chromium trioxide oxidation indicated their basic oligosaccharide portion to be NeuAc alpha 2----8NeuAc alpha 2----3Gal beta 1----4Glc. The difference between the two forms was exclusively in the ceramide moiety of the molecule, one containing mainly long-chain (C22-C25) fatty acids and an equimolar proportion of C16 and C18 long-chain bases, and the other mainly palmitic acid and C18 long-chain base.  相似文献   

11.
S Takasaki  A Kobata 《Biochemistry》1986,25(19):5709-5715
Asparagine-linked sugar chains were quantitatively released from fetuin by hydrazinolysis. Structural analysis of the sugar chains by sequential exoglycosidase digestion in combination with methylation analysis and Smith degradation revealed that most of them have typical biantennary (8%) and triantennary (74%) structures containing different amounts of N-acetylneuraminic acid residues. In addition, an unusual tetrasialyl triantennary sugar chain (17%) containing the Gal beta 1----3GlcNAc sequence in the outer chain moiety was detected, and its structure was elucidated as NeuAc alpha 2----3Gal beta 1----3(NeuAc alpha 2----6)-GlcNAc beta 1----4(NeuAc alpha 2----6Gal beta 1----4GlcNAc beta 1----2)Man alpha 1----3(NeuAc alpha 2----3Gal beta 1----4GlcNAc beta 1----2Man alpha 1----6)Man beta 1----4GlcNAc beta 1----4GlcNAc.  相似文献   

12.
The carbohydrate units of the rat erythrocyte membrane sialoglycoprotein rSGP-4 [Edge, A. S. B., & Weber, P. (1981) Arch. Biochem. Biophys. 209, 697-705] have been characterized. All of the carbohydrate of this Mr 19,000 glycoprotein occurs in O-glycosidic linkage to the peptide; following alkaline borohydride treatment and chromatography on Bio-Gel P-2, sialic acid containing oligosaccharides terminating in N-acetylgalactosaminitol were obtained. Their structures were determined by compositional analysis, exoglycosidase digestions, alkaline sulfite degradation, and periodate oxidation. The oligosaccharides were characterized for molecular weight and linkage by direct chemical ionization and gas-liquid chromatography/mass spectrometry, respectively. The structures are proposed to be NeuAc alpha 2----3Gal beta 1----3GalNAc-ol, Gal beta 1----3(NeuAc alpha 2----6)GalNAc-ol, NeuAc alpha 2----3Gal beta 1----3(NeuAc alpha 2----6)GalNAc-ol, and NeuAc alpha 2----3Gal beta 1----3(NeuAc alpha 2----3Gal beta 1----4GlcNAc beta 1----6)GalNAc-ol. Two of the N-acetylglucosamine-containing hexasaccharides were present per molecule of rSGP-4 along with two trisaccharides and seven tetrasaccharides.  相似文献   

13.
Helicobacter pylori, like many other microbes, has the ability to bind to carbohydrate epitopes. Several sugar sequences have been reported as active for the bacterium, including some neutral, sulfated, and sialylated structures. We investigated structural requirements for the sialic acid-dependent binding using a number of natural and chemically modified gangliosides. We have chosen for derivatization studies two kinds of binding-active glycolipids, the simple ganglioside S-3PG (Neu5Ac alpha 3Gal beta 4GlcNAc beta 3Gal beta 4Glc beta 1Cer, sialylparagloboside) and branched polyglycosylceramides (PGCs) of human origin. The modifications included oxidation of the sialic acid glycerol chain, reduction of the carboxyl group, amidation of the carboxyl group, and lactonization. Binding experiments confirmed a preference of H. pylori for 3-linked sialic acid and penultimate 4-linked galactose. As expected, neolacto gangliosides (with Gal beta 4GlcNAc in the core structure) were active in our assays, whereas gangliosides with lacto (Gal beta 3GlcNAc) and ganglio (Gal beta 3GalNAc) carbohydrate chains were not. Negative binding results were also obtained for disialylparagloboside (with terminal NeuAc alpha 8NeuAc) and NeuAc alpha 6-containing glycolipids. Chemical studies revealed dependence of the binding on Neu5Ac and its glycerol and carboxyl side chains. Most of the derivatizations performed on these groups abolished the binding; however, some of the amide forms turned out to be active, and one of them (octadecylamide) was found to be an excellent binder. The combined data from molecular dynamics simulations indicate that the binding-active configuration of the terminal disaccharide of S-3PG is with the sialic acid in the anticlinal conformation, whereas in branched PGCs the same structural element most likely assumes the synclinal presentation.  相似文献   

14.
Alkaline phosphatase purified from human placenta contains a single asparagine-linked sugar chain in one molecule. The sugar chain was quantitatively liberated as radioactive oligosaccharides from the polypeptide moiety by hydrazinolysis followed by N-acetylation and NaB3H4 reduction, and separated by paper electrophoresis into one neutral and two acidic fractions. By a combination of sequential exoglycosidase digestion and methylation analysis, the structures of oligosaccharides in the neutral fraction were confirmed to be as follows: Gal beta 1----4GlcNAc beta 1----2Man alpha 1----6(Gal beta 1----4GlcNAc beta 1----2Man alpha 1----3)Man beta 1----4GlcNAc beta 1----4(+/- Fuc alpha 1----6)GlcNAc. The acidic oligosaccharide fractions were mixtures of mono- and disialyl derivatives of the neutral fraction. All the sialic acid residues of the sugar chains occur as the NeuAc alpha 2----3Gal group. In the case of monosialyl derivatives, the N-acetylneuraminic acid was exclusively linked to the Man alpha 1----3 arm.  相似文献   

15.
The structure of sialylated carbohydrate units of bronchial mucins obtained from cystic fibrosis patients was investigated by 500-MHz 1H NMR spectroscopy in conjunction with sugar analysis. After subjecting the mucins to alkaline borohydride degradation, sialylated oligosaccharide-alditols were isolated by anion-exchange chromatography and fractionated by high performance liquid chromatography. Five compounds could be obtained in a rather pure state; their structures were established as the following: A-1, NeuAc alpha(2----3)Gal beta(1----4) [Fuc alpha(1----3)]GlcNAc beta(1----3)Gal-NAc-ol; A-2, NeuAc alpha(2----3)Gal beta(1----4)GlcNAc beta(1----6)-[GlcNAc beta (1----3)]GalNAc-o1; A-3, NeuAc alpha(2----3)Gal beta-(1----4)[Fuc alpha(1----3)]GlcNAc beta(1----3)Gal beta(1----3) GalNAc-o1; A-4, NeuAc alpha(2----3)Gal beta(1----4)[Fuc alpha(1----3)]Glc-NAc NAc beta(1----6)[GlcNAc beta(1----3)]GalNAc-o1; A-6,NeuAc alpha-(2----3) Gal beta(1----4)[Fuc alpha(1----3)]GlcNAc beta(1----6)[Gal beta-(1----4) GlcNAc beta(1----3)]GalNAc-o1. The simultaneous presence of sialic acid in alpha(2----3)-linkage to Gal and fucose in alpha(1----3)-linkage to GlcNAc of the same N-acetyllactosamine unit could be adequately proved by high resolution 1H NMR spectroscopy. This sequence constitutes a novel structural element for mucins.  相似文献   

16.
A number of gangliosides were isolated from cat and sheep erythrocytes for use in analyzing the specificity of a panel of human anti-heterophile monoclonal antibodies. The structures of these compounds were determined by a combination of different procedures, including sugar analysis, glycosidase treatment, periodate oxidation, TLC immunostaining, methylation analysis, and mass spectrometry. These methods identified the cat erythrocytes gangliosides (C1 and C2) as N-glycolylneuraminic acid (NeuGc)-containing hematosides; C1 was shown to be NeuGc alpha 2----8NeuGc alpha 2----3Gal beta I----4Glc-Cer [NeuGc)2GD3) and C2 to be NeuAc alpha 2----8NeuGc alpha 2----3Gal beta 1----4Glc-Cer [NeuAc-NeuGc-)GD3). The two sheep gangliosides (S1 and S2) were found to be novel glycolipids based on the paragloboside sequence; S1 was identified as NeuGc alpha 2----8NeuGc alpha 2----3Gal beta 1----4GlcNAc beta 1----3Gal beta 1----4Glc-Cer [NeuGc)2-disialylparagloboside) and S2 as NeuAc alpha 2----8NeuGc alpha 2----3Gal beta 1----4GlcNAc beta 1----3Gal beta 1----4Glc-Cer [NeuAc-NeuGc-)-disialylparagloboside). Structural analysis of these compounds was aided by the use of 252Cf fission fragment ionization time-of-flight mass spectrometry. This method provided easily interpretable spectra on methylated derivatives which were particularly useful in determining the sialic acid composition of the gangliosides and the sequence of their disialosyl side chains.  相似文献   

17.
The carbohydrate binding specificity of Allomyrina dichotoma lectin II was investigated by analyzing the behavior of various complex type oligosaccharides and human milk oligosaccharides on an A. dichotoma lectin II-agarose column. Basically, the lectin interacts with the Gal beta 1----4GlcNAc group. Substitution of their terminal galactose residues by Neu5Ac alpha 2----6 will enhance their affinity to the lectin. By contraries, substitution at the C-2 or C-3 position of their terminal galactose with other sugars including sialic acid deprives their affinity to the lectin. With this characteristic, the immobilized lectin column can be used to separate complex type oligosaccharides with the Neu5Ac alpha 2----6Gal beta 1----4GlcNAc group from their isomeric oligosaccharides with the Neu5Ac alpha 2----3Gal beta 1----4GlcNAc group, where Neu5Ac is N-acetylneuraminic acid.  相似文献   

18.
Fetal calf liver microsomes were found to be capable of sialylating 14C-galactosylated ovine submaxillary asialomucin. The main oligosaccharide product chain could be obtained by beta-elimination under reductive conditions and was identified as NeuAc alpha 2 leads to 3Gal beta 1 leads to 3GalNAcol (where GalNAcol represents N-acetylgalactosaminitol) by means of high performance liquid chromatography (HPLC) analysis and methylation. The branched trisaccharide Gal beta 1 leads to 3(NeuAc alpha 2 leads to 6)-GalNAcol and the disaccharide NeuAc alpha 2 leads to 6GalNAcol were not formed. Very similar results were obtained when asialofetuin and antifreeze glycoprotein were used as an acceptor. When 3H-sialylated antifreeze glycoprotein ([3H]NeuAc alpha 2 leads to 3Gal beta 1 leads to 3GalNAc-protein) was incubated with fetal calf liver microsomes and CMP-[14C]NeuAc, a reduced tetrasaccharide could be isolated. The structure of this product chain appeared to be [3H]NeuAc alpha 2 leads to 3Gal beta 1 leads to 3([14C]NeuAc alpha 2 leads to 6)GalNAcol, as established by means of HPLC analysis, specific enzymatic degradation with Newcastle disease virus neuraminidase, and periodate oxidation. These data indicate that fetal calf liver contains two sialyltransferases involved in the biosynthesis of the O-linked bisialotetrasaccharide chain. The first enzyme is a beta-galactoside alpha 2 leads to 3 sialyltransferase which converts Gal beta 1 leads to 3 GalNAc chains to the substrate for the second enzyme, a (NeuAc alpha 2 leads to 3Gal beta 1 leads to 3)GalNAc-protein alpha 2 leads to 6 sialyltransferase. The latter enzyme does not sialylate GalNAc or Gal beta 1 leads to 3GalNAc units but is capable of transferring sialic acid to C-6 of GalNAc in NeuAc alpha 2 leads to 3Gal beta 1 leads to 3GalNAc trisaccharide side chains, thereby dictating a strictly ordered sequence of sialylation of the Gal beta 1 leads to 3 GalNAc units in fetal calf liver.  相似文献   

19.
Rainbow trout sperm contained almost exclusively monoanionic ganglioside fraction as a major acidic glycosphingolipid. Two monoacidic gangliosides were isolated and purified in this study and designated as sperm ganglioside 1 and 2 (sg-1 and sg-2). The two gangliosides, sg-1 and sg-2, contained the same neutral sugars, galactose and glucose in molar ratio of 1:1 and no GalNAc except for the presence of N-acetyl-neuraminic acid (NeuAc) in sg-1 and deaminated neuraminic acid (KDN; 2-keto-3-deoxy-D-glycero-D-galacto-nononic acid) in sg-2. The complete structures of these gangliosides were determined by a combination of methylation analysis, fast atom bombardment mass spectrometry, 400-MHz one- and two-dimensional 1H nuclear magnetic resonance spectroscopy, fatty acid analysis, and endoglycoceramidase digestion NeuAc alpha 2----3Gal beta 1----4Glc beta 1----Cer sg-1 [(NeuAc)GM3] KDN alpha 2----3Gal beta 1----4Glc beta 1----Cer sg-2 [(KDN)GM3] where, for both sg-1 and sg-2, the ceramide moieties (Cer) were found to be made up of 4-sphingenine and mainly C16:0 fatty acid (palmitate; 95%) with a minor amount of C24:1 fatty acyl chain (nervonate, 5%). The structure of sg-2 is novel and represents the first example of a new class of gangliosides, i.e. KDN-gangliosides.  相似文献   

20.
The carbohydrate-binding specificity of a novel plant lectin isolated from the seeds of Tetracarpidium conophorum (Nigerian walnut) has been studied by quantitative hapten inhibition assays and by determining the behavior of a number of oligosaccharides and glycopeptides on lectin-Sepharose affinity columns. The Tetracarpidium lectin shows preference for simple, unbranched oligosaccharides containing a terminal Gal beta 1----4GlNAc sequence over a Gal beta 1----3GlcNAc sequence and substitution by sialic acid or fucose of the terminal galactose residue, the subterminal N-acetylglucosamine or more distally located sugar residues of oligosaccharides reduce binding activity. Branched complex-type glycans containing either Gal beta 1----4GlcNAc or Gal beta 1----3GlcNAc termini bind with higher affinity than simpler oligosaccharides. The lectin shows highest affinity for a tri-antennary glycan carrying Gal beta 1----4GlcNAc substituents on C-2 and C-4 of Man alpha 1----3 and C-2 of Man alpha 1----6 core residues. Bi- and tri-glycans lacking this branching pattern bind more weakly. Tetra-antennary glycans and mono- and di-branched hybrid-type glycans also bind weakly to the immobilized lectin. Therefore, Tetracarpidium lectin complements the binding specificities of well-known lectins such as Datura stramonium agglutinin, Phaseolus vulgaris agglutinin, and lentil lectin and will be a useful additional tool for the identification and separation of complex-type glycans.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号