首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Characterizing membrane proteins by sedimentation equilibrium is challenging because detergents and/or lipid molecules, usually required for solubilization, form a complex with the protein. The most common way to overcome this problem is Tanford and Reynolds' density matching method, which eliminates the buoyant mass contributions of detergents/lipids by adjusting the solvent density with D2O/H2O mixtures to render either detergent or lipid molecules neutrally buoyant. Unfortunately, the method is practical only for detergent densities between 1.0 (H2O) and 1.1 (D2O) g ml(-1), excluding many of the more commonly used detergents for membrane protein studies. Here, we present a modern variant of Tanford and Reynolds' method that (1) is applicable to any detergent regardless of its specific density, (2) does not compromise accuracy and precision, and (3) provides additional information about the number of detergent molecules that are bound to each protein. The new method was applied successfully to Delta(1-43)A-I, an amino-terminal deletion mutant of human apolipoprotein A-I. Interestingly, we observed a significantly lower Delta(1-43)A-I/octyl-glucoside complex partial specific volume than that expected from volume additivity rules, indicative of specific protein-detergent interactions.  相似文献   

2.
The interaction of macromolecules with themselves and with other macromolecules is fundamental to the functioning of living systems. Recent advances in the analysis of sedimentation velocity (SV) data obtained by analytical ultracentrifugation allow the experimenter to determine important features of such interactions, including the equilibrium association constant and information about the kinetic off-rate of the interaction. The determination of these parameters is made possible by the ability of modern software to fit numerical solutions of the Lamm Equation with kinetic considerations directly to SV data. Herein, the SV analytical advances implemented in the software package SEDPHAT are summarized. Detailed analyses of SV data using these strategies are presented. Finally, a few highlights of recent literature reports that feature this type of SV data analysis are surveyed.  相似文献   

3.
This paper describes a program available for PC's for the evaluation of molecular weights from sedimentation equilibrium. This program, in its two forms – MSTARA for absorption optical records and MSTARI for interference optical records – requires no prior assumption of the nature of the system (ideal, non-ideal, monodisperse, polydisperse, self-associating etc.) and takes into consideration the whole solute distribution (i.e. from solution meniscus to cell base) in the ultracentrifuge cell rather than just a selected data-set. MSTARA or MSTARI are therefore recommended as a first analysis programme of sedimentation equilibrium data coming off an absorption or interference based analytical ultracentrifuge. These programmes are therefore particularly well suited if heterogeneity (polydispersity or interaction phenomena) or non-ideality is suspected. Their use is demonstrated for a series of data-set types (ideal, non-ideal, polydisperse and self-associating). Although MSTARA and MSTARI are model independent, they provide the basis for more detailed analysis of interactions, polydisperse distributions or non-ideality via easy export of ASCII datafiles to model dependent routines. Received: 4 November 1996 / Accepted: 15 November 1996  相似文献   

4.
The quality of fit of sedimentation velocity data is critical to judge the veracity of the sedimentation model and accuracy of the derived macromolecular parameters. Absolute statistical measures are usually complicated by the presence of characteristic systematic errors and run-to-run variation in the stochastic noise of data acquisition. We present a new graphical approach to visualize systematic deviations between data and model in the form of a histogram of residuals. In comparison with the ideally expected Gaussian distribution, it can provide a robust measure of fit quality and be used to flag poor models.  相似文献   

5.
Sedimentation velocity analytical ultracentrifugation (SV-AUC) is routinely applied in biopharmaceutical development to measure levels of protein aggregation in protein products. SV-AUC is free from many limitations intrinsic to size exclusion chromatography (SEC) such as mobile phase and column interaction effects on protein self-association. Despite these clear advantages, SV-AUC exhibits lower precision measurements than corresponding measurements by SEC. The precision of SV-AUC is influenced by numerous factors, including sample characteristics, cell alignment, centerpiece quality, and data analysis approaches. In this study, we evaluate the precision of SV-AUC in its current practice utilizing a multilaboratory, multiproduct intermediate precision study. We then explore experimental approaches to improve SV-AUC measurement precision, with emphasis on utilization of high quality centerpieces.  相似文献   

6.
Closer scrutiny has been accorded a recently reported procedure for characterizing weak protein dimerization by sedimentation equilibrium (INVEQ) in which the equilibrium distribution is analyzed as a dependence of radial distance on solute concentration rather than of solute concentration on radial distance. By demonstrating theoretically that the fundamental parameter derived from the analysis is simply the difference between the dimerization constant and the osmotic second virial coefficient for monomer-monomer interaction, this investigation refutes the original claim that independent estimates of these two parameters can be obtained by nonlinear curve fitting of the sedimentation equilibrium distribution. This criticism also applies to conventional analyses of sedimentation distributions by the commonly employed Beckman Origin and NONLIN software. Numerically simulated distributions are then analyzed to demonstrate limitations of the procedure and also to indicate a means of improving the reliability of the returned estimate of the dimerization constant. These features are illustrated by applying the original and revised analytical procedures to a sedimentation equilibrium distribution for alpha-chymotrypsin (pH 4.0, I 0.05 M).  相似文献   

7.
Time-derivative approaches to analyzing sedimentation velocity data have proven to be highly successful and have now been used routinely for more than a decade. For samples containing a small number of noninteracting species, the sedimentation coefficient distribution function, g(s *), traditionally has been fitted by Gaussian functions to derive the concentration, sedimentation coefficient, and diffusion coefficient of each species. However, the accuracy obtained by that approach is limited, even for noise-free data, and becomes even more compromised as more scans are included in the analysis to improve the signal/noise ratio (because the time span of the data becomes too large). Two new methods are described to correct for the effects of long time spans: one approach that uses a Taylor series expansion to correct the theoretical function and a second approach that creates theoretical g(s *) curves from Lamm equation models of the boundaries. With this second approach, the accuracy of the fitted parameters is approximately 0.1% and becomes essentially independent of the time span; therefore, it is possible to obtain much higher signal/noise when needed. This second approach is also compared with other current methods of analyzing sedimentation velocity data.  相似文献   

8.
The required performance of an analytical method depends on the purpose for which it will be used. As a methodology matures, it may find new application, and the performance demands placed on the method can increase. Sedimentation velocity analytical ultracentrifugation (SV-AUC) has a long and distinguished history with important contributions to molecular biology. Now the technique is transitioning into industrial settings, and among them, SV-AUC is now used to quantify the amount of protein aggregation in biopharmaceutical protein products, often at levels less than 1% of the total protein mass. In this paper, we review recent advances to SV methodology which have been shown to improve quantitation of protein aggregation. Then we discuss the performance of the SV method in its current state, with emphasis on the precision and quantitation limit of the method, in the context of existing industrial guidance on analytical method performance targets for quantitative methods.  相似文献   

9.
For 25 years, the Gibbs Conference on Biothermodynamics has focused on the use of thermodynamics to extract information about the mechanism and regulation of biological processes. This includes the determination of equilibrium constants for macromolecular interactions by high precision physical measurements. These approaches further reveal thermodynamic linkages to ligand binding events. Analytical ultracentrifugation has been a fundamental technique in the determination of macromolecular reaction stoichiometry and energetics for 85 years. This approach is highly amenable to the extraction of thermodynamic couplings to small molecule binding in the overall reaction pathway. In the 1980s this approach was extended to the use of sedimentation velocity techniques, primarily by the analysis of tubulin-drug interactions by Na and Timasheff. This transport method necessarily incorporates the complexity of both hydrodynamic and thermodynamic nonideality. The advent of modern computational methods in the last 20 years has subsequently made the analysis of sedimentation velocity data for interacting systems more robust and rigorous. Here we review three examples where sedimentation velocity has been useful at extracting thermodynamic information about reaction stoichiometry and energetics. Approaches to extract linkage to small molecule binding and the influence of hydrodynamic nonideality are emphasized. These methods are shown to also apply to the collection of fluorescence data with the new Aviv FDS.  相似文献   

10.
Analytical ultracentrifugation (AUC) has re-emerged as a powerful technique for protein characterisation. We report the pivotal role sedimentation equilibrium AUC has played in the development of macrophage inflammatory protein-1α (MIP-1α) as a protein therapeutic. MIP-1α has potential clinical applications in cancer but its clinical use is limited, since it associates to form large insoluble aggregates in physiological buffers. Using AUC as a screening technique, we have produced a biologically active variant of MIP-1α, BB-10010, which has a reduced tendency to aggregate in physiological buffers. The aggregation of protein based pharmaceuticals is routinely monitored by size exclusion chromatography (SEC). Comparison of the data acquired by SEC and AUC, demonstrates that owing to the complexity of BB-10010, AUC analysis is required in addition to SEC to provide a rigorous characterisation of molecular association. This work has been extended to include the use of AUC as an analytical tool to monitor the quality of BB-10010 during formulation and stability studies. Accepted: 6 October 1996  相似文献   

11.
Gleaning information regarding the molecular physiology of macromolecular complexes requires knowledge of their component stoichiometries. In this work, a relatively new means of analyzing sedimentation velocity (SV) data from the analytical ultracentrifuge is examined in detail. The method depends on collecting concentration profile data simultaneously using multiple signals, like Rayleigh interferometry and UV spectrophotometry. If the cosedimenting components of a complex are spectrally distinguishable, continuous sedimentation-coefficient distributions specific for each component can be calculated to reveal the molar ratio of the complex's components. When combined with the hydrodynamic information available from the SV data, a stoichiometry can be derived. Herein, the spectral properties of sedimenting species are systematically explored to arrive at a predictive test for whether a set of macromolecules can be spectrally resolved in a multisignal SV (MSSV) experiment. Also, a graphical means of experimental design and criteria to judge the success of the spectral discrimination in MSSV are introduced. A detailed example of the analysis of MSSV experiments is offered, and the possibility of deriving equilibrium association constants from MSSV analyses is explored. Finally, successful implementations of MSSV are reviewed.  相似文献   

12.
DnaK, the prokaryotic Hsp70 molecular chaperone, requires the nucleotide exchange factor and heat shock protein GrpE to release ADP. GrpE and DnaK are tightly associated molecules with an extensive protein-protein interface, and in the absence of ADP, the dissociation constant for GrpE and DnaK is in the low nanomolar range. GrpE reduces the affinity of DnaK for ADP, and the reciprocal linkage is also true: ADP reduces the affinity of DnaK for GrpE. The energetic contributions of GrpE side-chains to GrpE-DnaK binding were probed by alanine-scanning mutagenesis. Sedimentation velocity (SV) analytical ultracentrifugation (AUC) was used to measure the equilibrium constants (Keq) for GrpE binding to the ATPase domain of DnaK in the presence of ADP. ADP-bound DnaK is the natural target of GrpE, and the addition of ADP (final concentration of 5 microM) to the preformed GrpE-DnaK(ATPase) complexes allowed the equilibrium association constants to be brought into an experimentally accessible range. Under these experimental conditions, the substitution of one single GrpE amino acid residue, arginine 183 with alanine, resulted in a GrpE-DnaK(ATPase) complex that was weakly associated (Keq =9.4 x 10(4) M). This residue has been previously shown to be part of a thermodynamic linkage between two structural domains of GrpE: the thermosensing long helices and the C-terminal beta-domains. Several other GrpE side-chains were found to have a significant change in the free energy of binding (DeltaDeltaG approximately 1.5 to 1.7 kcal mol(-1)), compared to wild-type GrpE.DnaK(ATPase) in the same experimental conditions. Overall, the strong interactions between GrpE and DnaK appear to be dominated by electrostatics, not unlike barnase and barstar, another well-characterized protein-protein interaction. GrpE, an inherent thermosensor, exhibits non-Arrhenius behavior with respect to its nucleotide exchange function at bacterial heat shock temperatures, and mutation of several solvent-exposed side-chains located along the thermosensing indicated that these residues are indeed important for GrpE-DnaK interactions.  相似文献   

13.
Determination of the stoichiometry of macromolecular assemblies is fundamental to an understanding of how they function. Many different biophysical methodologies may be used to determine stoichiometry. In the past, both sedimentation equilibrium and sedimentation velocity analytical ultracentrifugation have been employed to determine component stoichiometries. Recently, a method of globally analyzing multisignal sedimentation velocity data was introduced by Schuck and coworkers. This global analysis removes some of the experimental inconveniences and inaccuracies that could occur in the previously used strategies. This method uses spectral differences between the macromolecular components to decompose the well-known c(s) distribution into component distributions ck(s); that is, each component k has its own ck(s) distribution. Integration of these distributions allows the calculation of the populations of each component in cosedimenting complexes, yielding their stoichiometry. In our laboratories, we have used this method extensively to determine the component stoichiometries of several protein-protein complexes involved in cytoskeletal remodeling, sugar metabolism, and host-pathogen interactions. The overall method is described in detail in this work, as are experimental examples and caveats.  相似文献   

14.
Carcinoembryonic antigen cell adhesion molecule 1 (CEACAM1) is a type 1 transmembrane, homotypic cell adhesion protein expressed on epithelial and hematopoietic cells. CEACAM1 has four major isoforms with three or four immunoglobulin (Ig)-like ectodomains and either long or short cytoplasmic domains. In a 3D model of breast epithelial cell morphogenesis, CEACAM1 plays an essential role in lumen formation [J. Cell Sci. 112 (1999) 4193]. Two soluble ectodomain isoforms of CEACAM1 expressed in myeloma cells were immunologically active and highly glycosylated. The molecular weights of the 3-ecto- and 4-ectodomain isoforms were 90 and 110kDa, respectively, and monomers by sedimentation equilibrium centrifugation. Both isoforms were prolate ellipsoids with axial ratios of 6 for the 3-ecto- and 8 for 4-ectodomain isoforms, respectively, by size exclusion chromatography and analytical ultracentrifugation. Both isoforms caused a significant reduction in lumen formation when tested in the 3D model culture system.  相似文献   

15.
Sedimentation equilibrium is a powerful tool for the characterization of protein self-association and heterogeneous protein interactions. Frequently, it is applied in a configuration with relatively long solution columns and with equilibrium profiles being acquired sequentially at several rotor speeds. The present study proposes computational tools, implemented in the software SEDPHAT, for the global analysis of equilibrium data at multiple rotor speeds with multiple concentrations and multiple optical detection methods. The detailed global modeling of such equilibrium data can be a nontrivial computational problem. It was shown previously that mass conservation constraints can significantly improve and extend the analysis of heterogeneous protein interactions. Here, a method for using conservation of mass constraints for the macromolecular redistribution is proposed in which the effective loading concentrations are calculated from the sedimentation equilibrium profiles. The approach is similar to that described by Roark (Biophys. Chem. 5 (1976) 185-196), but its utility is extended by determining the bottom position of the solution columns from the macromolecular redistribution. For analyzing heterogeneous associations at multiple protein concentrations, additional constraints that relate the effective loading concentrations of the different components or their molar ratio in the global analysis are introduced. Equilibrium profiles at multiple rotor speeds also permit the algebraic determination of radial-dependent baseline profiles, which can govern interference optical ultracentrifugation data, but usually also occur, to a smaller extent, in absorbance optical data. Finally, the global analysis of equilibrium profiles at multiple rotor speeds with implicit mass conservation and computation of the bottom of the solution column provides an unbiased scale for determining molar mass distributions of noninteracting species. The properties of these tools are studied with theoretical and experimental data sets.  相似文献   

16.
Analytical ultracentrifugation is one of the classical techniques for the study of protein interactions and protein self-association. Recent instrumental and computational developments have significantly enhanced this methodology. In this paper, new tools for the analysis of protein self-association by sedimentation velocity are developed, their statistical properties are examined, and considerations for optimal experimental design are discussed. A traditional strategy is the analysis of the isotherm of weight-average sedimentation coefficients s(w) as a function of protein concentration. From theoretical considerations, it is shown that integration of any differential sedimentation coefficient distribution c(s), ls-g(*)(s), or g(s(*)) can give a thermodynamically well-defined isotherm, as long as it provides a good model for the sedimentation profiles. To test this condition for the g(s(*)) distribution, a back-transform into the original data space is proposed. Deconvoluting diffusion in the sedimentation coefficient distribution c(s) can be advantageous to identify species that do not participate in the association. Because of the large number of scans that can be analyzed in the c(s) approach, its s(w) values are very precise and allow extension of the isotherm to very low concentrations. For all differential sedimentation coefficients, corrections are derived for the slowing of the sedimentation boundaries caused by radial dilution. As an alternative to the interpretation of the isotherm of the weight-average s value, direct global modeling of several sedimentation experiments with Lamm equation solutions was studied. For this purpose, a new software SEDPHAT is introduced, allowing the global analysis of several sedimentation velocity and equilibrium experiments. In this approach, information from the shape of the sedimentation profiles is exploited, which permits the identification of the association scheme and requires fewer experiments to precisely characterize the association. Further, under suitable conditions, fractions of incompetent material that are not part of the reversible equilibrium can be detected.  相似文献   

17.
Xu Y 《Biophysical chemistry》2004,108(1-3):141-163
New graphical procedures have been developed to investigate the heterogeneity of protein preparations using sedimentation equilibrium. The heterogeneous systems that can be studied include self-associating systems contaminated by incompetent monomer, self-associating systems contaminated by non-dissociating oligomer and simple non-interacting monomer-oligmer disperse systems. The new procedures are based on the concentration dependence of the apparent association constants estimated by a non-linear least square fitting program (NONLIN), on the assumption of conservation of mass during sedimentation and on the applications of several standard techniques for statistical inferences of NONLIN estimations. The procedures outlined here can detect various types of heterogeneity, discriminate amongst different types of heterogeneity, estimate the amount of contaminant causing heterogeneity and determine the true equilibrium constant of the self-associating components. The procedures appear to be sensitive, accurate and easily applicable when tested using both protein samples and computer simulated data.  相似文献   

18.
19.
20.
A reported discrepancy between quantitative estimates of the extent of enhanced alpha-chymotrypsin dimerization in the presence of sucrose is traced to different consequences of using an incorrect value of the buoyant molecular weight in the analysis of sedimentation equilibrium distributions. Support is thereby provided for the earlier contention that the effect of sucrose, as well as of glucose and raffinose, on dimerization may be rationalized quantitatively in terms of molecular crowding by an inert cosolute.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号