首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
4.
The human prothrombin gene: transcriptional regulation in HepG2 cells.   总被引:1,自引:0,他引:1  
J D Bancroft  S A McDowell  S J Degen 《Biochemistry》1992,31(49):12469-12476
  相似文献   

5.
Helicobacter pylori infection stimulates several intracellular signaling pathways and is accompanied by increased gene expression in gastric epithelial cells. High-density cDNA microarray was used to characterize the mRNA expression profile of genes in human gastric cancer cells (MKN45, AGS) cocultured with H. pylori. Coculture with cag pathogenicity island (PAI)-positive H. pylori (wild-type) significantly up-regulated mRNA expression in 8 of 2304 genes tested. In 6 (interleukin-8, I(kappaB)alpha, A20, ERF-1, keratin K7, glutathione peroxidase) of the 8 genes, up-regulation was confirmed by RT-PCR. In coculture with isogenic cagE-negative mutant ((Delta)cagE), which encodes a type IV secretion system with other genes in the cag PAI, no significant up-regulation was found. We further analyzed the role of A20. Transfection of expression vector encoding A20 resulted in an inhibition of H. pylori-mediated NF-kappaB activation, indicating that H. pylori-mediated A20 expression could be a negative regulator of NF-kappaB activation. Taken together, these results indicate the importance of microarray technology as a tool for analyzing the complex interplay between H. pylori and the host.  相似文献   

6.
多药耐药基因的转录调控与治疗学机会   总被引:3,自引:0,他引:3  
缪泽鸿  丁健 《生命科学》2004,16(4):200-205
人肿瘤多药耐药mdr-1基因的转录调控机制复杂。多个正调控和负调控元件与转录因子的相互作用、表遗传学因素的参与等共同决定着人mdr-1基因表达的组织、细胞和刺激的特异性和依赖性。同时,也为特异或相对特异性地防止/抑制肿瘤细胞的mdr-1基因表达、克服肿瘤多药耐药性提供了基础。新抗肿瘤药物沙尔威辛和ET-743有力地诠释了控制mdr-1基因转录所蕴藏的治疗学机会。  相似文献   

7.
8.
9.
NF-kappaB regulates the expression of the human complement receptor 2 gene   总被引:1,自引:0,他引:1  
CR2 is a key regulator of the B cell response to Ag. Here we show that NF-kappaB enhances the expression of the human CR2 gene. Promoter truncation, deletion, and mutagenesis studies indicated a functional role for a consensus NF-kappaB promoter element, as well as a heterogeneous nuclear ribonucleoprotein D element and an overlapping X box/E box. By supershift analysis, the first two elements bound NF-kappaB p50 and p65 and heterogeneous nuclear ribonucleoprotein RNP D, respectively. The X box/E box bound regulatory factor X5 and, surprisingly, NF-kappaB p50 and p65. Overexpression of NF-kappaB p50 enhanced the activity of the CR2 promoter in B cell lines and primary B cells, suggesting a direct role for NF-kappaB in regulating promoter activity. Importantly, mutation of the NF-kappaB element or the X box/E box rendered the promoter unresponsive to NF-kappaB p50. Using chromatin immunoprecipitation in live B cell lines and primary B cells, we found that NF-kappaB proteins p50, p65, and c-Rel bound to the genomic promoter at two locations that overlap with the consensus NF-kappaB element or the X box/E box. Finally, stimuli that activate NF-kappaB enhanced the activity of the CR2 promoter, and LPS rapidly increased the number of CR2 proteins on the surface of primary B cells. We propose that the NF-kappaB signaling pathway enhances the expression of the CR2 gene, as a result of NF-kappaB proteins binding to two CR2 promoter elements. Thus, at the onset of an infection, LPS could sensitize the B cell to Ag by enhancing the level of CR2-costimulatory molecules on the cell surface.  相似文献   

10.
11.
12.
13.
14.
15.
16.
In response to infection, epithelia mount an innate immune response that includes the production of antimicrobial peptides. However, the pathways that connect infection and inflammation with the induction of antimicrobial peptides in epithelia are not understood. We analyzed the molecular links between infection and the expression of three antimicrobial peptides of the beta-defensin family, human beta-defensin (hBD)-1, hBD-2, and hBD-3 in the human epidermis. After exposure to microbe-derived molecules, both monocytes and lymphocytes stimulated the epidermal expression of hBD-1, hBD-2, and hBD-3. The induced expression of hBD-3 was mediated by transactivation of the epidermal growth factor receptor. The mechanisms of induction of hBD-1 and hBD-3 were distinct from each other and from the IL-1-dependent induction of hBD-2 expression. Thus during inflammation, epidermal expression of beta-defensins is mediated by at least three different mechanisms.  相似文献   

17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号