首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have explored the use of Hoechst 33342 (H33342) to carry radioactivity to the cell nucleus. H33342 enters cells and targets DNA at adenine-thymine-rich regions of the minor groove. Considerable membrane blebbing and ruffling occur in CHO cells within minutes after its addition to the culture medium in micromolar quantities. Blue vesicles are apparent in the cell cytoplasm, and by 30 min the nuclei are stained dark blue. Upon its binding to DNA, a visible emission shift of the dye can be observed with fluorescence microscopy. We have radioiodinated (125I) H33342 and specifically irradiated nuclear DNA by incubating CHO cells with 125I-H33342 at 37 degrees C and accumulating 125I decays at -90 degrees C. At various times, the cells are thawed and assayed for survival (clonogenicity) and DSB (gamma-H2AX) formation. 125I-H33342 decay leads to a monoexponential decrease in cell survival with a D0 of 122 125I decays per cell and a linear increase in DNA DSB induction (equivalent to 15 gamma-H2AX foci/cell). Cell death is not modified by the radioprotective effects of H33342 because we use considerably lower concentrations than those that provide a slight protection against gamma radiation. We conclude that cell killing by 125I-H33342 and the induction of gamma-H2AX foci are highly correlated.  相似文献   

2.
Clubb BH  Locke M 《Tissue & cell》1998,30(6):684-691
Nuclear envelope invaginations occur in many kinds of cell. Double-labeling of 3T3 cells with Hoechst 33342 strain for DNA and phalloidin-rhodamine for F-actin, show that some nuclei appear to contain tangled knots of F-actin. Concanavalin A-fluorescein staining for membranes shows that the knots are continuations of the nuclear envelope. Although they contain F-actin, the knots appear by electron microscopy to be cytoplasmic invaginations lacking microfilaments. Since we have shown previously that nuclear-membrane associated actin forms perinuclear shells in 3T3 cells, we propose that nuclear knots also are composed of actin associated with the nuclear membrane. 3T3 nuclei also contain nuclear invaginations of a second kind. These invaginations lie perpendicular to the first type and lack F-actin.  相似文献   

3.
The complex pathway which links the agonist-cell membrane receptor binding to the response at the genome level involves, among other elements, protein kinase C (PKC). Agonists acting at the cell membrane can affect an autonomous nuclear polyphosphoinositide signaling system inducing an activation of nuclear phosphoinositidase activity and a subsequent translocation of PKC to the nuclear region. The fine localization of PKC has been investigated by means of electron microscopy quantitative immunogold labeling in 3T3 mouse fibroblasts, mitogenically stimulated by IGF-I. The enzyme, which in untreated cells is present in the cytoplasm, except for the organelles, and in the nucleoplasm, after IGF-I treatment is reduced in the cytoplasm and almost doubled in the nucleus. The PKC isoform translocated to the nucleus is the isozyme, which is found not only associated with the nuclear envelope but mainly with the interchromatin domains. By using in situ matrix preparations, PKC appears to be retained at the nuclear matrix level, both at the nuclear lamina and at the inner nuclear matrix, suggesting a direct involvement in the phosphorylation of nuclear proteins which are responsible for the regulation of DNA replication.  相似文献   

4.
The exposure of mouse zygotes pre-stained with Hoechst 33342 to u.v. irradiation for 20-30 sec significantly or completely inhibited development to blastocysts in vitro. However, development to the blastocyst stage of enucleated eggs receiving pronuclei from untreated eggs was as good as that of control reconstituted eggs when the cytoplasm originated from eggs exposed to u.v. irradiation for 20-30 sec, but was significantly lower when the cytoplasm was from eggs exposed for 40 sec. The chromosomes at the second metaphase stage could be removed with 15 sec of exposure to u.v. irradiation under a fluorescence microscope. Most eggs enucleated at the second metaphase that received a single inner cell mass nucleus (75%) showed pronuclear formation 6 h after activation; 23% of them developed to morphologically normal 2-cell eggs and 5% developed to blastocysts. These results demonstrate that the cytoplasm of mouse zygotes is more resistant to u.v. irradiation after Hoechst staining. Eggs at the second metaphase, from which chromosomes have been removed under a fluorescence microscope, can therefore be used as cytoplasm recipients for nuclear transplantation of inner cell mass nuclei.  相似文献   

5.
Ryanodine receptors (RyRs) are mainly located on the endoplasmic reticulum (ER) and play an important role in regulating glucose-induced cytosolic Ca(2+) oscillation in pancreatic β-cells. However, subcellular locations and functions of RyRs on other cell organelles such as nuclear envelope are not well understood. In order to investigate the role of RyRs in nuclear Ca(2+) oscillation we designed and conducted experiments in intact primary pancreatic β-cells. Immunocytochemistry was used to examine the expression of RYRs on the nuclear envelope. Confocal microscopy was used to evaluate the function of RYRs on the nuclear envelope. We found that RyRs are expressed on the nuclear envelope in single primary pancreatic β-cells and isolated nuclei. Laser scanning confocal microscopy studies indicated that application of glucose to the cells co-incubated with Ca(2+) indicator Fluo-4 AM and cell-permeable nuclear indicator Hoechst 33342 resulted in nuclear Ca(2+) oscillation. The pattern of glucose-induced Ca(2+) oscillation in the nucleus and cytosol was similar. The reduction of Ca(2+) oscillation amplitude by ryanodine was much greater in the nucleus though both the cytosol and the nucleus Ca(2+) amplitude decreased by ryanodine. Our results suggest that functional ryanodine receptors not only exist in endoplasmic reticulum but are also expressed in nuclear envelope of pancreatic β-cells.  相似文献   

6.
OBJECTIVE: To develop a simple and direct method to simultaneously determine apoptotic cells from a treated population of cells and detect the changes of intracellular Ca2+ in these apoptotic cells, in particular single ones, by confocal microscopy. STUDY DESIGN: MGC-803 cells treated with As2O3 were used as the double-staining cell model with Hoechst 33342 as a DNA probe and Fluo-3AM as a Ca2+ indicator. MGC-803 cell apoptosis induced by As2O3 was first demonstrated by DNA ladder in gel electrophoresis. Based on the difference in DNA stainability with Hoechst 33342 and corresponding fluorescence intensity between live and apoptotic cells, apoptotic cells and the changes in intracellular Ca2+ were detected at the same time by confocal microscopy. No necrotic cells in the group treated with As2O3 were found by the trypan blue exclusion test. RESULTS: The results from confocal microscope detection showed that intact and apoptotic cells were successfully recognized and the changes of intracellular Ca2+ in apoptotic and intact cells were simultaneously detected in the same sample. CONCLUSION: We provided a useful method to exactly detect changes in intracellular Ca2+ in apoptotic cells, especially in single ones, by confocal microscopy and to exclude the artifact effect of necrotic and intact cells.  相似文献   

7.
Cytoskeletal aspects of monensin-treated 3T3 cells with rotating nuclei were studied by immunofluorescence. The pattern of intermediate filaments and microtubules appeared unchanged when compared with control cells having a stationary nucleus. In contrast, the actin microfilament bundles appeared to have a consistent distribution in cells with rotating nuclei. Typically, we did not find long microfilament bundles that traverse the length of the cytoplasm of cells that were fixed at the time of nuclear rotation. Instead, there was a local distribution of short microfilament bundles situated ventrally to the nucleus and oriented at various angles to one another and to the predominant distribution of microfilament bundles in the cell. The observations suggest that the actin cytoskeleton is reorganized locally before or during rotation of the nucleus.  相似文献   

8.
Harringtonine (HT), a kind of anticancer drug isolated from Chinese herb-Cephalotaxus hainanensis Li, can induce apoptosis in promyelocytic leukemia HL-60 cells. With both two-photon laser scanning microscopy and confocal laser scanning microscopy in combination with the fluorescent probe Hoechst 33342, tetramethyrhodamine ethyl ester (TMRE) and Fluo 3-AM, we simultaneously observed HT-induced changes in nuclear morphology, mitochondrial membrane potential and intracellular calcium concentration ([Ca2+]i) in HL-60 cells, and developed a real-time, sensitive and invasive method for simultaneous multi-parameter observation of drug- treating living cells at the level of single cell.  相似文献   

9.
BACKGROUND INFORMATION: Proliferating cell nuclear antigen (PCNA) is a key component of the DNA replication machinery involved in the process of DNA elongation, recombination, methylation and repair. We have used PCNA fused with green fluorescent protein (GFP-PCNA) as a convenient tool to show the progress of S-phase in single embryos in vivo. Here we make a comparison between Hoechst 33342 and GFP-PCNA as in vivo event markers for DNA synthesis. Hoechst 33342 and DAPI (4,6-diamidino-2-phenylindole) have been used as a simple and rapid method for assessing membrane permeability and staining DNA in mammalian cells. However, it is difficult to use these dyes in living embryos during cell cycle progression studies over long periods of time as they are phototoxic. Moreover, though Hoechst staining reveals nuclear morphology, it gives no information about the progress of S-phase. RESULTS: We have microinjected or expressed a GFP-PCNA chimera to develop a method which enables visualization of S-phase in sea urchin and Caenorhabditis elegans embryos during the first and subsequent embryonic cell cycles and in Drosophila stage 4 embryos during syncytial nuclear divisions. We find that nuclear accumulation of GFP-PCNA correlates with S-phase onset. Loss of the chimera from the nucleus occurs when the nuclear envelope breaks down at mitosis. CONCLUSIONS: GFP-PCNA is a accurate and non-toxic marker of S-phase in embryos during early development.  相似文献   

10.
In order to test the existence of mechanical coupling between the rotational movements of two adjacent nuclei, we prepared binucleate 3T3 cells and observed their nuclear movements by near infrared microscopy and recorded them with time-lapse video techniques. We found that 49 out of 110 (44%) of the selected binucleate cells expressed nuclear rotation. Rotation could occur in just one of the nuclei while the second nucleus remained stationary (31/110) or in both nuclei simultaneously (18/110). In almost all cases where both nuclei rotated simultaneously (15/110) they did so at different speeds and in opposite directions. The nuclei were observed to rotate in the same direction in only three of the examples. The results are consistent with a weak mechanical interaction between a rotating nucleus and its neighbor. Consistent with our previous observations in mononucleate cells, we did not find a characteristic position of the centrosphere or a special distribution of the microtubules or the intermediate filaments in binucleate cells with rotating nuclei. There was an absence of long, well-formed microfilament bundles beneath the nuclei during rotation, even in the local region beneath the rotating nucleus in those cells with one rotating and one stationary nucleus. Also consistent with observations of mononucleate cells, nuclear rotation was inhibited by treatment with colcemid, although the ability of the nuclei to rotate was eventually restored when the colcemid-containing medium was replaced with normal medium.  相似文献   

11.
Manipulations of DNA and cellular structures are essential for the propagation of genetically identical animals by nuclear transfer. However, none of the steps have been optimized yet. This study reports a protocol that improves live dynamic imaging of the unfertilized bovine oocyte's meiotic spindle microtubules with microinjected polymerization-competent X-rhodamine-tubulin and/or with vital long-wavelength excited DNA fluorochrome Sybr14 so that the maternal chromosomes can be verifiably removed to make enucleated eggs the starting point for cloning. Suitability of the new fluorochromes was compared to the conventional UV excitable Hoechst 33342 fluorochrome. Enucleation removed the smallest amount of cytoplasm (4-7%) and was 100% efficient only when performed under continuous fluorescence, i.e., longer fluorescence exposure. This was in part due to the finding that the second metaphase spindle is frequently displaced (60.7 +/- 10%) from its previously assumed location subjacent to the first polar body. Removal of as much as 24 +/- 3% of the oocyte cytoplasm underneath the polar body, in the absence of fluorochromes, often resulted in enucleation failure (36 +/- 6%). When labeled oocytes were exposed to fluorescence and later activated, development to the blastocyst stage was lowest in the group labeled with Hoechst 33342 (3%), when compared to Sybr14 (19%), rhodamine-tubulin (23%), or unlabeled oocytes (37%). This suggests that longer wavelength fluorochromes can be employed for live visualization of metaphase spindle components, verification of their complete removal during enucleation, and avoidance of the confusion between artifactual parthenogenesis versus "cloning" success, without compromising the oocyte's developmental potential after activation.  相似文献   

12.
Intracellular toxic effects of the dequalinium-induced protofibrils of alpha-synuclein have been investigated with the yeast system expressing alpha-synuclein-GFP fusion protein in single copy, which appears in the green halo around the plasma membrane. Intracellular responses of the green fluorescent protein were analyzed as the cells were treated with dequalinium (DQ) and lactacystin. Yeast cells expressing alpha-synuclein-GFP were susceptible to both compounds in alpha-synuclein-dependent manner. Upon DQ treatment, the green halo became smeared throughout the cytoplasm while lactacystin induced a few discrete green dots, reflecting intracellular formation of the protofibrils and the protein inclusions, respectively. The DQ-treated yeast cells were intensely stained with the nucleic acid stains of cell-permeable Hoechst 33342 and cell-impermeable propidium imidione, indicating that nucleus has been disrupted in addition to plasma membrane destabilization. Those DQ-treated yeast cells, however, still contained active mitochondria identified with MitoTracker Red. Therefore, the DQ-induced protofibrillar state of alpha-synuclein-GFP has been suggested to cause the nuclear damage either independently or in combination with the membrane destabilization without affecting mitochondria.  相似文献   

13.
Replication protein A (RPA) is a single-stranded DNA-binding protein which plays a role in DNA replication, repair, and recombination. We used gel mobility shift, super gel mobility shift, and Western blot to determine the fate of RPA during Hoechst 33342-induced apoptosis in HL-60 cells. Multiple bands were detected by gel mobility shift after the incubation of single-stranded gamma-(32)P-labeled oligo(dT)(30) with the nuclear extracts of HL-60 cells. Super gel mobility shift results indicated that only the highest molecular weight protein/oligo(dT)(30) complexes bound with anti-human RPA-32 and/or anti-human RPA-70 antibodies forming RPA/oligo(dT)(30) complexes. After the treatment of HL-60 cells with 15 microg/ml Hoechst 33342 for 3 h, the bands of RPA/oligo(dT)(30) complexes were decreased and bands of the lowest molecular weight protein/oligo(dT)(30) complexes were significantly increased when compared to the control group. These low-molecular-weight bands did not bind with RPA-32 or RPA-70 antibodies. Western blotting results showed that both RPA-32 and RPA-70 were decreased significantly in a time-dependent manner after 1 h of incubation with Hoechst 33342. These results demonstrate that in HL-60 cells, Hoechst 33342-induced apoptosis is associated with a rapid loss of the binding capacity of RPA to oligo(dT)(30) as well as immunoactive RPA-70 and RPA-32.  相似文献   

14.
The process of autophagy involves the formation of autophagosomes, double-membrane structures that encapsulate cytosol. Microtubule-associated protein light chain 3 (LC3) was the first protein shown to specifically label autophagosomal membranes in mammalian cells, and subsequently EGFP-LC3 has become one of the most widely utilized reporters of autophagy. Although LC3 is currently thought to function primarily in the cytosol, the site of autophagosome formation, EGFP-LC3 often appears to be enriched in the nucleoplasm relative to the cytoplasm in published fluorescence images. However, the nuclear pool of EGFP-LC3 has not been specifically studied in previous reports, and mechanisms by which LC3 shuttles between the cytoplasm and nucleoplasm are currently unknown. In this study, we therefore investigated the regulation of the nucleo-cytoplasmic distribution of EGFP-LC3 in living cells. By quantitative fluorescence microscopy analysis, we demonstrate that soluble EGFP-LC3 is indeed enriched in the nucleus relative to the cytoplasm in two commonly studied cell lines, COS-7 and HeLa. Although LC3 contains a putative nuclear export signal (NES), inhibition of active nuclear export or mutation of the NES had no effect on the nucleo-cytoplasmic distribution of EGFP-LC3. Furthermore, FRAP analysis indicates that EGFP-LC3 undergoes limited passive nucleo-cytoplasmic transport under steady state conditions, and that the diffusional mobility of EGFP-LC3 was substantially slower in the nucleus and cytoplasm than predicted for a freely diffusing monomer. Induction of autophagy led to a visible decrease in levels of soluble EGFP-LC3 relative to autophagosome-bound protein, but had only modest effects on the nucleo-cytoplasmic ratio or diffusional mobility of the remaining soluble pools of EGFP-LC3. We conclude that the enrichment of soluble EGFP-LC3 in the nucleus is maintained independently of active nuclear export or induction of autophagy. Instead, incorporation of soluble EGFP-LC3 into large macromolecular complexes within both the cytoplasm and nucleus may prevent its rapid equilibrium between the two compartments.  相似文献   

15.
A confocal fluorescence microscope with an argon-ion laser (488 nm) and a He-Cd laser (325 nm) was used to study spatial heterogeneity of the calcium signals in rat basophilic leukemia 2H3 cloned cell line (RBL-2H3). After stimulation with antigen (2,4-dinitrophenol-conjugated bovine serum albumin), fluo-3-fluorescence intensities increased in individual RBL-2H3 cells with different lag times. Time-dependent profiles of the fluo-3-fluorescence intensities resembled closely the patterns of the sequential fluorescence-ratio images of fura-2, which were used to measure the intracellular free-calcium concentration ([Ca2+]i) in individual RBL-2H3 cells using a conventional fluorescence microscope. The present results obtained using the confocal fluorescence microscope showed spatial heterogeneities of fluo-3-fluorescence intensities, suggesting the existence of spatial heterogeneity of [Ca2+]i in RBL-2H3 cells. That is, the results showed that calcium signals first occurred transiently at pseudopodia in RBL-2H3 cells, then the signals transferred to the central parts of the cells. In addition, from the fluorescence images of co-loaded Hoechst 33342 (bisbenzimide H 33342, a DNA-specific probe) which were produced by excitation with a He-Cd laser, it was found that the fluorescence images of the nucleus were quite similar to those of the calcium signals mentioned above. This suggested that the receptor-mediated calcium signals were transferred not only to the cytoplasm but also to the nucleus.  相似文献   

16.
Harringtonine (HT), a kind of anticancer drug isolated from Chinese herb-Cephalotaxus hainanensis Li, can induce apoptosis in promyelocytic leukemia HL-60 cells. With both two-photon laser scanning microscopy and confocal laser scanning microscopy in combination with the fluorescent probe Hoechst 33342, tetramethyrhodamine ethyl ester (TMRE) and Fluo 3-AM, we simultaneously observed HT-induced changes in nuclear morphology, mitochondrial membrane potential and intracellular calcium concentration ([Ca2+]i) in HL-60 cells, and developed a real-time, sensitive and invasive method for simultaneous multi-parameter observation of drugtreating living cells at the level of single cell.  相似文献   

17.
The fluorescent compound Hoechst 33342 is a substrate for many multidrug resistance (MDR) transporters and is widely used to characterize their transport activity. We have constructed mutants of the adenosine triphosphate (ATP) binding cassette (ABC)-type MDR transporter LmrA of Lactococcus lactis that are defective in ATP hydrolysis. These mutants and wild-type LmrA exhibited an atypical behavior in the Hoechst 33342 transport assay. In membrane vesicles, Hoechst 33342 transport was shown to be independent of the ATPase activity of LmrA, and it was not inhibited by orthovanadate but sensitive to uncouplers that collapse the proton gradient and to N,N'-dicyclohexylcarbodiimide, an inhibitor of the F0F1-ATPase. In contrast, transport of Hoechst 33342 by the homologous, heterodimeric MDR transporter LmrCD showed a normal ATP dependence and was insensitive to uncouplers of the proton gradient. With intact cells, expression of LmrA resulted in an increased rate of Hoechst 33342 influx while LmrCD caused a decrease in the rate of Hoechst 33342 influx. Cellular toxicity assays using a triple knockout strain, i.e., L. lactis delta lmrA delta lmrCD, demonstrate that expression of LmrCD protects cells against the growth inhibitory effects of Hoechst 33342, while in the presence of LmrA, cells are more susceptible to Hoechst 33342. Our data demonstrate that the LmrA-mediated Hoechst 33342 transport in membrane vesicles is influenced by the transmembrane pH gradient due to a pH-dependent partitioning of Hoechst 33342 into the membrane.  相似文献   

18.
19.
Summary A single dose of the DNA-binding cytostatic agent bleomycin (100 g/g body weight, subcutaneously) was given to 10-day-old rats to study unscheduled repair DNA synthesis in nucleolar and in bulk nuclear chromatin of postmitotic Purkinje neurons. The Feulgen reaction and Hoechst 33342 staining were used for quantitative evaluation of nuclear DNA content and chromatin structure. The repair synthesis of DNA was detected by 3H-thymidine autoradiography.The data showed a lesser staining of Purkinje as well as granule cell DNA by Hoechst 33342 in bleomycin-treated animals than in controls, but there was no difference in staining with the Feulgen reation. The mechanisms of DNA staining by both cytochemical methods suggest that bleomycin reacted preferentially with AT-rich and single stranded DNA in cerebellar cells in vivo. Weak 3H-thymidine labelling was found in Purkinje cells of both control and treated rats, but in the latter group the labelling was more pronounced near or over the nucleolus. The enhanced unscheduled DNA synthesis in the nucleolar region of Purkinje cells of treated animals may be due to greater damage of DNA in this region or may indicate a greater ability of the nucleolar chromatin to repair its DNA.Dedicated to Professor Dr. Z. Lojda, Dr. Sc., on the occasion of his 60th birthday.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号