首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Human lung fibroblasts (WI-38) in late exponential phase of growth, in stationary phase after confluency was reached, and at high or low number of population doublings were used to investigate the synthesis of proline and hydroxyproline from glutamate or arginine. Glutamate was from two to five times as effective a precursor as arginine; glutamine did not seem to be involved in these metabolic pathways. Accumulation of protein-bound hydroxyproline in cell layers was observed only after confluency. Confluent cells synthesized more proline from glutamate than did cells in late exponential growth. Conversion of glutamate into intracellular free proline was conducted also to a greater extent in confluent cells at a high number of population doublings. Conversion of glutamate into proline or hydroxyproline in cell-layer protein was not affected significantly by the number of population doublings. Less total protein as well as less hydroxyproline accumulated with cells at a high number of population doublings.  相似文献   

2.
Bone marrow stromal cells, obtained from postnatal bone marrow, contain progenitors able to differentiate into several mesenchymal lineages. Their use in gene and cell therapy requires their in vitro expansion and calls for the investigation of the culture conditions required to preserve these cells as a stem compartment with high differentiative potential during their life span. Here we report that fibroblast growth factor 2 (FGF-2)-supplemented bone marrow stromal cell primary cultures display an early increase in telomere size followed by a gradual decrease, whereas in control cultures telomere length steadily decreases with increasing population doublings. Together with clonogenic culture conditions, FGF-2 supplementation prolongs the life span of bone marrow stromal cells to more than 70 doublings and maintains their differentiation potential until 50 doublings. These results suggest that FGF-2 in vitro selects for the survival of a particular subset of cells enriched in pluripotent mesenchymal precursors and is useful in obtaining a large number of cells with preserved differentiation potential for mesenchymal tissue repair.  相似文献   

3.
The V-79 Chinese hamster cells were irradiated by gamma-rays in dose of 0.5 Gy at powers of doses 0.48 Gy/min (an acute irradiation) and 0.0485 MGy/min (a prolonged irradiation). The acute and prolonged irradiation in a dose of 0.5 Gy enlarges frequency of the appearance of micronucleus (MN). Subsequent cultivation of the irradiated cells during 20 generations enlarges frequency of MN, and for prolonged an irradiation the boosted frequency of MN, is saved during 40-60 generations. After an acute irradiation the number of MN starts to reduce after 20 doublings.  相似文献   

4.
For the human diploid cell lines WI-38 and WI-26, the percentage of cells able to incorporate 3H-TdR into their nuclei under standard conditions declines as a function of either elapsed calendar time or the number of population doublings. The rate of decline varies for each population depending on its overall lifespan. If, however, the percent of labelled nuclei is considered as a function of the percent of lifespan completed (i.e., the number of population doublings at time t/total number of population doublings attained during lifespan of the culture), a highly reproducible relationship is found. Using 10% class intervals for the incidence of labelled nuclei, it is possible to distinguish the ‘age’ of populations which differ by about 5 passages or less. With this simple technique, one can evaluate simultaneously and in a reproducible way the current age of the culture, as well as the remaining proliferative capacity of the population.  相似文献   

5.
There is increasing evidence biological responses to ionizing radiation are not confined to those cells that are directly hit, but may be seen in the progeny at subsequent generations (genomic instability) and in non-irradiated neighbors of irradiated cells (bystander effects). These so called non-targeted phenomena would have significant contributions to radiation-induced carcinogenesis, especially at low doses where only a limited number of cells in a population are directed hit. Here we present data using a co-culturing protocol examining chromosomal instability in alpha-irradiated and bystander human fibroblasts BJ1-htert. At the first cell division following exposure to 0.1 and 1Gy alpha-particles, irradiated populations demonstrated a dose dependent increase in chromosome-type aberrations. At this time bystander BJ1-htert populations demonstrated elevated chromatid-type aberrations when compared to controls. Irradiated and bystander populations were also analyzed for chromosomal aberrations as a function of time post-irradiation. When considered over 25 doublings, all irradiated and bystander populations had significantly higher frequencies of chromatid aberrations when compared to controls (2-3-fold over controls) and were not dependent on dose. The results presented here support the link between the radiation-induced phenomena of genomic instability and the bystander effect.  相似文献   

6.
R S Trowbridge  J Lehmann  P Brophy 《In vitro》1982,18(11):952-960
Cells derived from the brain of a 6 wk-old ferret have been subcultured over 100 times and have undergone over 400 population doublings in vitro. These cells, referred to as Mpf cells, have an absolute efficiency of colony formation in excess of 45%, exhibit a mean population doubling time of 12.5 h, possess ferret-specific antigens, and have isozymes with electrophoretic properties that are the same as those of isozymes found in ferret liver. The cells exhibit a cytopathic effect and support the synthesis of progeny virus when they are infected with the viruses of lymphocytic choriomeningitis, Newcastle disease, pseudorabies, Sindbis, vaccinia, and vesicular stomatitis. The passage level of the Mpf cells, their elapsed number of population doublings, their possession of ferret-specific antigens, and the comigration of four isozymes obtained from these cells and ferret liver define the cells as an established line of ferret cells.  相似文献   

7.
Genomic instability and bystander effects have recently been linked experimentally both in vivo and in vitro. The aim of the present study was to determine if medium from irradiated cells several passages distant from the original exposure could initiate apoptosis in unirradiated cells. Human keratinocytes (from the HPV-G cell line) were irradiated with 0.5 Gy or 5 Gy gamma rays. Medium was harvested at each passage up to the 7th passage (approximately 35 population doublings) postirradiation and transferred to unirradiated keratinocytes. Intracellular calcium levels, mitochondrial membrane potential, and the level of reactive oxygen species were all monitored for 24 h after medium transfer. Rapid calcium fluxes (within 30 s), loss of mitochondrial membrane potential, and increases in reactive oxygen species (from 6 h after medium transfer) were observed in the recipient cells. There was no significant difference between medium conditioned by cells irradiated with 0.5 or 5 Gy. The effect of medium from progeny was the same as the initial effect reported previously and did not diminish with increasing passage number. The data suggest that initiating events in the cascade that leads to apoptosis are induced in unirradiated cells by a signal produced by irradiated cells and that this signal can still be produced by the progeny of irradiated cells for several generations.  相似文献   

8.
Summary Cells derived from the brain of a 6 wk-old ferret have been subcultured over 100 times and have undergone over 400 population doublings in vitro. These cells, referred to as Mpf cells, have an absolute efficiency of colony formation in excess of 45%, exhibit a mean population doubling time of 12.5 h, possess ferret-specific antigens, and have isozymes with electrophoretic properties that are the same as those of isozymes found in ferret liver. The cells exhibit a cytopathic effect and support the synthesis of progeny virus when they are infected with the viruses of lymphocytic choriomeningitis, Newcastle disease, pseudorabies, Sindbis, vaccinia, and vesicular stomatitis. The passage level of the Mpf cells, their elapsed number of population doublings, their possession of ferret-specific antigens, and the comigration of four isozymes obtained from these cells and ferret liver define the cells as an established line of ferret cells.  相似文献   

9.
Osteoprogenitor cells present in single-cell suspensions prepared from fetal rat calvaria (RC) form discrete mineralized three-dimensional bone nodules when cultured long-term in the presence of ascorbic acid and beta-glycerophosphate. These cells (CFU-O) constitute less than 1% of the total cell population under standard culture conditions and their number is increased in the presence of dexamethasone. Using the formation of the bone nodule as a marker for CFU-O, we have now analyzed the proliferation and differentiation capacity of these CFU-O by redistribution and continuous subculture experiments in the presence and absence of dexamethasone. Cell redistribution experiments showed no increase in nodule number after one population doubling with either treatment. After 5.4 population doublings of the entire RC population, nodule number increased up to 2.0-fold in control cultures and 4.5-fold in cultures containing 10 nM dexamethasone. Continuous subculture experiments in which cultures were split 1:3 every 3 day for up to seven subcultures showed that nodule number decreased in parallel with the split ratio in the absence of dexamethasone, while with dexamethasone nodule number was elevated above the number present in primary cultures for 1 or 2 subcultures after which nodule number decreased with the split ratio. Bone nodules were present for up to 18 population doublings. Measurements of nodule area by automated image analysis showed that dexamethasone increased nodule size and that nodule size decreased from primary to 1st to 2nd subculture with or without dexamethasone. The data suggest that dexamethasone selectively stimulates the proliferation of osteoprogenitor cells and that these progenitor cells have a limited capacity for generating daughter cells capable of expressing the bone phenotype.  相似文献   

10.
Human endometrial stromal cells transfected with an origin-defective, temperature-sensitive simian virus 40 recombinant plasmid are dependent on T-antigen function for proliferation and at the permissive temperature have an extended life span in culture. Southern blot analysis indicates that the transfected gene is present in low copy number, possibly at a single integration site. Normal stromal cells are capable of 10 to 20 population doublings in culture. Transfected cultures have been carried at the permissive temperature to 80 population doublings before crisis. In the multistep model of malignant transformation of human cells, these cells represent one of the earliest stages: extended but finite life span. We have used these cells to investigate alterations in signal transduction that may be responsible for this early stage of transformation caused by the large T antigen. Temperature shift experiments indicate that the expression of ornithine decarboxylase (ODC) but not of c-fos is altered by the large T antigen. Induction of c-fos by serum or 12-O-tetradecanoylphorbol-13-acetate is independent of temperature. However, in the transfected cells, the induction of ODC by asparagine or serum is greatly enhanced at the permissive temperature. This result indicates that the large T antigen acts downstream of c-fos but upstream of ODC expression in the signal-transducing cascade.  相似文献   

11.
Prokhorov LIu 《Tsitologiia》1999,41(10):900-913
Earlier we developed a "stationary phase aging" model and introduced a definition of life span of "stationary phase aging" cell cultures. In this model the cells grow after seeding in flasks without subcultivation and medium change. They reach cell saturation density, stop dividing, gradually degrade ("stationary phase aging") and perish. By the term "culture life span" we designate the time from cell seeding until culture death. We designate the culture as dead when the number of living cells is less than 10 per cent of their number at saturation density of cell culture. The life span of transformed Chinese hamster cells was found to be proportional to the duration of their growth from cell seeding up to saturation density, as well as to the number of cell culture doublings and to be inversely proportional to the velocity of cell culture doubling for the same growth period. Maximum life span of mammals is known to be proportional to pregnancy duration and to the age at puberty. We found that maximal life span of mammals was proportional to the number of cell population doublings and inversely proportional to the velocity of cell population doubling during embryonal period or for the time from zygote to growth termination. The dependences for cell cultures and for mammals are analogous to each other.  相似文献   

12.
Most human somatic cells contain no or very low levels of telomerase. The over-expression of the catalytic subunit (hTERT) of human telomerase is a common method to generate cells with a greatly prolonged lifespan. These cells serve as models for cells that are either difficult to cultivate or have a limited lifespan in vitro. In addition, hTERT over-expressing cells are thought to be a useful resource for tissue engineering and regenerative medicine.While tumour suppressors and cell cycle checkpoints are maintained for an extended period in most hTERT over-expressing cells we found that there is a gradual change in gene expression over a range of 130 population doublings (PD) for the majority of genes analysed. Seven genes were significantly down-regulated with increasing population doublings (PDs), while only two were up-regulated. One gene, stanniocalcin 2, was highly expressed in parental fibroblasts but completely diminished as a consequence of hTERT transgene expression.These data demonstrate that in hTERT over-expressing cells two different types of expression changes occur: one can be directly associated with hTERT transgene expression itself, while others might occur more gradual and with varying kinetics. These changes should be taken into account when these cells are used as functional models or for regenerative purposes.  相似文献   

13.
Established tumour cell lines are ubiquitous tools in research, but their representativity is often debated. One possible caveat is that many cell lines are derived from cells with genomic instability, potentially leading to genotype changes in vitro. We applied SNP-array analysis to an established tumour cell line (WiT49). Even though WiT49 exhibited chromosome segregation errors in 30% of cell divisions, only a single chromosome segment exhibited a shift in copy number after 20 population doublings in culture. In contrast, sub-populations derived from single cells expanded for an equal number of population doublings showed on average 5.8 and 8.9 altered segments compared to the original culture and to each other, respectively. Most copy number variants differentiating these single cell clones corresponded to pre-existing variations in the original culture. Furthermore, no sub-clonal variation was detected in any of the populations derived from single cells. This indicates that genetic bottlenecks resulting from population reduction poses a higher threat to genetic representativity than prolonged culture per se, even in cell lines with a high rate of genomic instability. Genetic bottlenecks should therefore be considered a potential caveat in all studies involving sub-cloning, transfection and other conditions leading to a temporary reduction in cell number.  相似文献   

14.
There is a wide range of reported values for prostacyclin (PGI2) synthesis by cultured endothelial cells from human umbilical veins (HUVE). Part of this variation may be due to differences in isolation and culture conditions, but part may be due to previously unstudied variation in the number of population doublings (PDs) which the cells have undergone in vitro. Attention is now shifting to arachidonic acid (AA) metabolism by cells from adult human vessels and these cells may require increased PDs to obtain confluent cultures for testing. Therefore, we have examined the effect of number of cell population doublings as well as number of subcultivations on PGI2 synthesis using HUVE as a model system. Primary and first subcultivation cultures inoculated at high density, so that PDs at confluence were less than 4, synthesized 10 times as much PGI2 as the same isolates inoculated at low density with PDs greater than 4. Isolates inoculated and subcultivated so that the PDs at confluence after the fourth subcultivation were less than 6, showed 50% less PGI2 synthesis between the primary and first subcultivation and between the first and second subcultivations. Isolates with less than 4 PDs after the fourth subcultivation were carried further to determine the effect of extensive subcultivation. Four of six isolates showed a sudden increase in PGI2 synthesis which occurred between subcultivations 5 and 12 (PDs 4-6). These results demonstrate that AA metabolism is markedly affected by growth in culture and serial subcultivation.  相似文献   

15.
The number of population founders and the size of the population are two important variables in determining how much gene diversity can be retained in a population. A model is developed to determine the most cost‐effective balance of those two variables, based on comparing the marginal costs of increasing the number of founders vs. increasing the population size. Marginal costs, in this case, are the costs of increasing the number of founders or the population size by one animal. For a goal of retaining 90% gene diversity for 10–15 generations (approximately 100 years), the current recommendation of 20 effective founders is very close to the least‐cost solution when the ratio of the marginal costs is equal to one. However, when the ratio is greater or less than one that number can change considerably. Zoo Biol 29:638–646, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

16.
Human diploid fibroblasts (HDF) complete a limited number of cell divisions before entering a growth arrest state that is termed replicative senescence. Two histone deacetylase inhibitors, sodium butyrate and trichostatin A, dramatically reduce the HDF proliferative life span in a manner that is dependent on one or more cell doublings in the presence of these agents. Cells arrested and subsequently released from histone deacetylase inhibitors display markers of senescence and exhibit a persistent G1 block but remain competent to initiate a round of DNA synthesis in response to simian virus 40 T antigen. Average telomere length in prematurely arrested cells is greater than in senescent cells, reflecting a lower number of population doublings completed by the former. Taken together, these results support the view that one component of HDF senescence mimics a cell cycle-dependent drift in differentiation state and that propagation of HDF in histone deacetylase inhibitors accentuates this component.  相似文献   

17.
When cells of Escherichia coli THU were starved for thymine, they continued to grow without division for at least two successive volume doublings at their initial rate. Within experimental error this average rate of volume increase, 0.21 mum(3) per hr, was identical with that observed in control cultures during two generations of growth in the presence of thymine. This growth rate was also independent of the age of the cells at the time of starvation. These results are consistent with the hypothesis, proposed earlier, that growth rates are controlled by uptake sites for binding, transport, or accumulation of compounds into the cell, that the number of these sites is constant throughout most of the cell cycle, and that this number doubles near or at cell division.  相似文献   

18.
Summary Immortal cells perpetuate the rises and falls of proliferation that are progressively damped in mortal long-term cultured cells. For immortal rat hepatoma Fao cells, similar waves of proliferation occurred about every 3–4 wk. Under the same conditions, embryonic human fibroblasts and transformed but not immortalized embryonic fibroblasts display similarly recurring proliferation waves that progressively decrease in amplitude until senescence of the lines. In addition, strains of diploid normal human skin fibroblasts cultured under different culture conditions display a similar time-pattern of proliferation. Although the amplitude and baseline of these fluctuations are characteristic for each cell line, a common point was marked slow down in proliferation after every sequence of about 25 population doublings for all cells. Renewed proliferation waves of Fao cells allow about 22–23 additional population doublings each. Normal embryonic fibroblasts culture and its transformed counterpart accumulate about 30 and 60 population doublings, respectively, before senescence. Normal fibroblast strains accumulate about 25 population doublings over their entire life spans. This halt in proliferation after every stretch of about 25 population doublings may correspond to a structural or functional stop following attrition of telomeric DNA. This putative stop may be bypassed once in transformed embryonic cells and repetitively in immortal cells. In support of this hypothesis, we observed rapid telomere shortening, in two steps, during divisions of mortal embryonic cells, and maintenance of long telomeres in immortal Fao cells, which may indicate episodic repair of telomeres. Alternatively, such maintenance of long telomeres may reflect survival and successive clonal growth of rare cells with long telomeres. We suggest that the balance between telomere attribution and repair processes regulates the waves of proliferation. Equal contributors to these studies.  相似文献   

19.
Human fibroblasts cultured in vitro can exhibit a different potential number of population doublings. In normal donors, the average number of population doublings is inversely related to the donor's age. An increased growth potential was detected in skin fibroblasts from breast cancer patients, independently of the donor's age. These cells responded in an abnormal way to 3 biological parameters: (1) colony formation in semisolid medium; (2) colony formation on monolayers of normal human epithelial cells; and (3) increase of saturation densities in overcrowded culture conditions. A third of these cultures, as well as skin fibroblasts from other cancer patients, at the plateau phase of growth exhibited a significant percentage of cells still synthesizing DNA. Exposure to overcrowding, limited in time, caused the selection of a cell subset which displayed new biological, biochemical and functional properties commonly found in transformed cells. The abnormal in vitro behavior of skin fibroblasts from breast cancer patients does not seem to be associated with the expression of oncofetal membrane markers (4F2, IL2 receptor) while the fibroblasts from patients with the adenomatosis of the colon and rectum (ACR) syndrome expressed the 4F2 antigen. This is the first time that the IL2 receptor is found on non-hematopoietic cells. Fibroblastic cells with abnormal characteristics, which may also present a decreased efficiency in organizing a primitive fibrin matrix, could represent in vivo an anarchistic milieu, favoring disturbed epithelial-stromal interactions and the emergence of the less structured tumor stromatic tissue.  相似文献   

20.
The phenomenon of delayed heritable lethal damage (often referred to as ``lethal mutations') in the progeny of cells which survive irradiation is now well established, but little is known of the mechanism by which this cell death occurs. Current theories suggest a generalised genomic instability affecting all cells which leads to the production of some mutations which are lethal, or alternatively that a lethal mutation gene is activated, mutated or induced by radiation and leads to persistent and random cell death at high levels in the progeny. The aim of this study was to look at the morphology of progeny of irradiated cells at various times after irradiation to establish how widespread morphological abnormalities were in the population and whether there was any evidence that such abnormalities were clonal. Using two different cell lines, the results showed that morphological evidence possibly suggestive of apoptosis occurred in the cultures after all doses of radiation and up to 45 cell doublings after exposure. There was no evidence of a decrease in the numbers of damaged or dead cells in colonies with number of divisions after irradiation, or with decreasing original radiation dose. There was a significant dose-dependent increase in the number of cells with microvilli for both cell lines. The dose-dependency of this effect did not change with number of divisions after irradiation. It is clear that morphological evidence of cellular damage persists for several generations after the initial exposure. The effects are widespread in the cell population, and their constancy over time argues strongly for a general instability and against a clonal mechanism, since clonal descendants should die out and leave undamaged survivors. The lack of evidence for necrosis or senescence together with many morphological changes in the cultures suggestive of apoptosis could indicate an active mechanism of cell death. It is concluded that survivor populations of irradiated cells from two widely different mammalian cell lines demonstrate an altered phenotype including gross morphological changes. These result in a higher probability that cell division will fail to yield two healthy progeny. Received: 22 January 1996 / Accepted in revised form: 24 September 1996  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号