首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
For five cytospecies of the Simulium damnosum Theobald complex of blackflies (Diptera: Simuliidae) from West Africa, both ends of the intergenic spacer region (IGS) of the rDNA have been sequenced with the aim of developing specific molecular markers. No specific differences in these two regions were detected between Simulium sanctipauli V. & D., Simulium sirbanum V. & D., Simulium soubrense V. & D., Simulium squamosum Enderlein and Simulium yahense V. & D., except in the number of A subrepeats at the 5' end of the IGS (two in S. squamosum and four or five in the others) and in position 310 of the 3' end (a C in S. squamosum and a G in the others). However, genetic distances within and between species overlapped. These DNA sequences had no strong phylogenetic signal, and the trees obtained were mostly unresolved. Although most sequences from S. squamosum clustered together, a few of them were more similar to those in other cytospecies. These results could be explained either by hybridization with genetic introgression or by ancestral polymorphism and recent speciation.  相似文献   

2.
A DNA technique for in situ hybridization developed by Kumar & Collins (1994) for use on polytene chromosomes of adult Anopheles mosquitoes (Diptera: Culicidae) was modified for use with Simulium larval salivary gland chromosomes (Diptera: Simuliidae). Cloned fragments of several Simulium genes (coding for aspartate amino transferase, cytochrome P450 and DNA polymerase) were successfully mapped physically by assigning specific band locations in Simulim sanctipauli V. & D. This represents the first attempt at locating genes beyond the resolution of linkage to inversions in any blackfly species.  相似文献   

3.
Larvae of the Simulium damnosum Theobald complex (Diptera: Simuliidae) were sampled in June 1996 from two sites in south-west Ghana where larviciding has not been applied: Sutri Rapids on the Tano river (05 degrees 23 minutes N 02 degrees 38 minures W) and Sekyere-Heman on the Pra river (05 degrees 11 minutes N 01 degrees 35 minutes W). All specimens were identified as Simulium sanctipauli Vajime & Dunbar sensu stricto (Diptera: Simuliidae). Bioassays with temephos (organophosphorus larvicide employed by the Onchocerciasis Programme for systematic treatment of most rivers across West Africa since the 1970s) showed about five-fold resistance in the Tano population (LC95 2.37-3.14 mg/L) and slight tolerance to temephos in the Pra population (LC95 0.67-0.76 mg/L), vs. the diagnostic concentration of 0.625 mg/L. Larval salivary polytene chromosomes of S. sanctipauli showed fixed inversions 1S-24/24, standard IIL-6 and a new inversion IL/36 polymorphism at Sutri on the Tano. These karyotype characteristics differ from those of temephos-resistant S. sanctipauli in rivers of C te d'Ivoire and other sites on the Tano in Ghana. Thus, temephos resistance in S. sanctipauli at Sutri is associated with distinct chromosomal configurations, showing that immigration was unlikely. This resistance could have been locally selected by exposure of S. sanctipauli larval populations to agrochemicals run-off from cocoa, coffee and oil plantations flanking the rivers.  相似文献   

4.
T Barnett  P M Rae 《Cell》1979,16(4):763-775
A large proportion of the 28S ribosomal RNA genes in Drosophila virilis are interrupted by a DNA sequence 9.6 kilobase pairs long. As regards both its presence and its position in the 28S gene (about two thirds of the way in), the D. virilis rDNA intervening sequence is similar to that found in D. melanogaster rDNA, but lengths differ markedly between the two species. Degrees of nucleotide sequence homology have been detected bewteen rDNA interruptions of the two species. This homology extends to putative rDNA intervening sequences in diverse higher diptera (other Drosophila species, the house fly and the flesh fly), but hybridization of cloned D. melanogaster and D. virilis rDNA interruption segments to DNA of several lower diptera has been negative. As is the case with melanogaster rDNA interruptions, segments of the virilis rDNA intervening sequence hybridize with non-rDNA components of the virilis genome, and interspecific homology may involve these non-rDNA sequences as well as rDNA interruptions. There is, however, evidence from buoyant density fractionation of DNA that the distributions of interruption-related sequences are distinct in D. melanogaster and D. virilis genomes. Moreover, thermal denaturation studies have indicated differing extents of homology between hybridizable sequences in D. virilis DNA and different segments of the D. melanogaster rDNA intervening sequence. We infer from our studies that rDNA intervening sequences are prevalent among higher diptera; that in the course of the evolution of these organisms, elements of the intervening sequences have been moderately to highly conserved; and that this conservation extends in at least two distantly related species of Drosophila to similar sequences found elsewhere in the genomes.  相似文献   

5.
Complete sequences of the rRNA genes of Drosophila melanogaster   总被引:19,自引:0,他引:19  
In this, the first of three papers, we present the sequence of the ribosomal RNA (rRNA) genes of Drosophila melanogaster. The gene regions of D. melanogaster rDNA encode four individual rRNAs: 18S (1,995 nt), 5.8S (123 nt), 2S (30 nt), and 28S (3,945 nt). The ribosomal DNA (rDNA) repeat of D. melanogaster is AT rich (65.9% overall), with the spacers being particularly AT rich. Analysis of DNA simplicity reveals that, in contrast to the intergenic spacer (IGS) and the external transcribed spacer (ETS), most of the rRNA gene regions have been refractory to the action of slippage-like events, with the exception of the 28S rRNA gene expansion segments. It would seem that the 28S rRNA can accommodate the products of slippage-like events without loss of activity. In the following two papers we analyze the effects of sequence divergence on the evolution of (1) the 28S gene "expansion segments" and (2) the 28S and 18S rRNA secondary structures among eukaryotic species, respectively. Our detailed analyses reveal, in addition to unequal crossing-over, (1) the involvement of slippage and biased mutation in the evolution of the rDNA multigene family and (2) the molecular coevolution of both expansion segments and the nucleotides involved with compensatory changes required to maintain secondary structures of RNA.   相似文献   

6.
We have examined the 28S ribosomal genes of the silkmoth, Bombyx mori, for the presence of insertion sequences. Two types of insertion sequences were found, each approximately 5 kb in length, which do not share sequence homology. Comparison of the nucleotide sequences of the junction regions with the uninserted gene reveals that one type of insertion has resulted in a 14 bp duplication of the 28S coding region at the insertion site. The location of this insertion and the 14 bp duplication are identical to that found in the Type I ribosomal insertion element of Drosophila melanogaster. The second type of insertion element is located at a site corresponding to approximately 75 bp upstream of the first type. The location of this insertion, the variability detected at its 5' junction, and a short region of sequence homology at its 3' junction suggest that it is related to the Type II element of D. melanogaster. This is the first example of a Type II-like rDNA insertion outside of sibling species of D. melanogaster, and the first example of a Type I-like rDNA insertion outside of the higher Diptera.  相似文献   

7.
A complete single unit of a ribosomal RNA gene (rDNA) of M. croslandi was sequenced. The ends of the 18S, 5.8S and 28S rRNA genes were determined by using the sequences of D. melanogaster rDNAs as references. Each of the tandemly repeated rDNA units consists of coding and non-coding regions whose arrangement is the same as that of D. melanogaster rDNA. The intergenic spacer (IGS) contains, as in other species, a region with subrepeats, of which the sequences are different from those previously reported in other insect species. The length of IGSs was estimated to be 7-12 kb by genomic Southern hybridization, showing that an rDNA repeating unit of M. croslandi is 14-19 kb-long. The sequences of the coding regions are highly conserved, whereas IGS and ITS (internal transcribed spacer) sequences are not. We obtained clones with insertions of various sizes of R2 elements, the target sequence of which was found in the 28S rRNA coding region. A short segment in the IGS that follows the 3' end of the 28S rRNA gene was predicted to form a secondary structure with long stems.  相似文献   

8.
The mermithid parasite, Isomermis lairdi Mondet, Poinar & Bernadou (Nematoda: Mermithidae), is known to have a major impact on populations of Simulium damnosum s.l . Theobald (Diptera: Simuliidae) and on their efficiency as vectors of Onchocerca volvulus (Leuckart) (Nematoda: Filarioidea). However, the value of I. lairdi and other mermithid parasites as potential means of integrated vector control has not been fully realized. This is partly because traditional taxonomic approaches have been insufficient for describing and analysing important aspects of their biology and host range. In total, rDNA barcode sequences have been obtained from over 70 I. lairdi mermithids found parasitizing S. damnosum s.l . larvae in three different rivers. No two sequences were found to vary by more than 0.5%, and cytospecies identification of mermithid hosts revealed that I. lairdi with identical rDNA barcodes can parasitize multiple cytoforms of the S. damnosum complex, including S. squamosum (Enderlein). Phylogenetic analysis using a partial sequence from the 18S ribosomal DNA barcode, grouped I. lairdi in a monophyletic group with Gastromermis viridis Welch (Nematoda: Mermithidae) and Isomermis wisconsinensis Welch (Nematoda: Mermithidae).  相似文献   

9.
Sequences of 16S rDNAs and the intergenic spacer (IGS) regions between the 16S and 23S rDNA of bacterial strains from genus Erwinia were determined. Comparison of 16S rDNA sequences from different species and subspecies clearly revealed intraspecies-subspecies homology and interspecies heterogeneity. Phylogenetic analyses of 16S rDNA sequence data revealed that Erwinia spp. formed a discrete monophyletic clade with moderate to high bootstrap values. PCR amplification of the 16S-23S rDNA regions using primers complementary to the 3' end of 16S and 5' end of 23S rRNA genes generated two DNA fragments. The small 16S-23S rDNA IGS regions of Erwinia spp. examined in this study varied considerably in size and nucleotide sequence. Multiple sequence alignment and phylogenetic analysis of small IGS sequence data showed a consistent relationship among the test strains that was roughly in agreement with the 16S rDNA data that reflected the accepted species and subspecies structure of the taxon. Sequence data derived from the large IGS resolved the strains into coherent groups; however, the sequence information would not allow any phylogenetic conclusion, because it failed to reflect the accepted species structure of the test strains.  相似文献   

10.
A multi‐locus approach was used to examine the DNA sequences of 10 nominal species of blackfly in the Simulium subgenus Gomphostilbia (Diptera: Simuliidae) in Malaysia. Molecular data were acquired from partial DNA sequences of the mitochondria‐encoded cytochrome c oxidase subunit I (COI), 12S rRNA and 16S rRNA genes, and the nuclear‐encoded 18S rRNA and 28S rRNA genes. No single gene, nor the concatenated gene set, resolved all species or all relationships. However, all morphologically established species were supported by at least one gene. The multi‐locus sequence analysis revealed two distinct evolutionary lineages, conforming to the morphotaxonomically recognized Simulium asakoae and Simulium ceylonicum species groups.  相似文献   

11.
Cytotaxonomic identifications of larvae of members of the Simulium damnosum Theobald (Diptera: Simuliidae) complex collected in forest zones of southeast Ghana and southwest Togo between 1977 and 1996 showed that the Djodji form of Simulium sanctipauli Vajime & Dunbar, a vector of onchocerciasis, was eliminated in 1988 by larvicide operations conducted by the World Health Organization (WHO) Onchocerciasis Control Programme (OCP) in West Africa. No members of the form were identified amongst 997 larvae collected up to 8 years after systematic control operations began in February 1988. The results are discussed in relation to estimates of the numbers of samples required to certify elimination and the possibility that other members of the S. damnosum complex were also eliminated by the OCP.  相似文献   

12.
棉铃虫18S核糖体RNA基因的序列分析及其分子系统学   总被引:4,自引:1,他引:3  
王瑛  陈晓峰  刘伟  周红章  赵珩 《昆虫学报》1999,42(3):241-247
克隆并分析了鳞翅目棉铃虫Helicoverpa armigera (Hübner)18S核糖体RNA基因(18S rDNA)的全序列,将该序列与鞘翅目、膜翅目、同翅目、双翅目、捻翅目和弹尾目各一种昆虫的同源保守区进行了比较。序列分析结果显示:鳞翅目和双翅目昆虫在18S rDNA结构上彼此较为相似,捻翅目昆虫的18S rDNA分子结构表现出与其它目昆虫有较大的差异,但相对与弹尾目昆虫的18S rDNA较为接近。该结果支持了有关捻翅目属于一个独立的目级分类阶元的论点。  相似文献   

13.
The set of "expansion segments" of any eukaryotic 26S/28S ribosomal RNA (rRNA) gene is responsible for the bulk of the difference in length between the prokaryotic 23S rRNA gene and the eukaryotic 26S/28S rRNA gene. The expansion segments are also responsible for interspecific fluctuations in length during eukaryotic evolution. They show a consistent bias in base composition in any species; for example, they are AT rich in Drosophila melanogaster and GC rich in vertebrate species. Dot-matrix comparisons of sets of expansion segments reveal high similarities between members of a set within any 28S rRNA gene of a species, in contrast to the little or spurious similarity that exists between sets of expansion segments from distantly related species. Similarities among members of a set of expansion segments within any 28S rRNA gene cannot be accounted for by their base-compositional bias alone. In contrast, no significant similarity exists within a set of "core" segments (regions between expansion segments) of any 28S rRNA gene, although core segments are conserved between species. The set of expansion segments of a 26S/28S gene is coevolving as a unit in each species, at the same time as the family of 28S rRNA genes, as a whole, is undergoing continual homogenization, making all sets of expansion segments from all ribosomal DNA (rDNA) arrays in a species similar in sequence. Analysis of DNA simplicity of 26S/28S rRNA genes shows a direct correlation between significantly high relative simplicity factors (RSFs) and sequence similarity among a set of expansion segments. A similar correlation exists between RSF values, overall rDNA lengths, and the lengths of individual expansion segments. Such correlations suggest that most length fluctuations reflect the gain and loss of simple sequence motifs by slippage-like mechanisms. We discuss the molecular coevolution of expansion segments, which takes place against a background of slippage-like and unequal crossing-over mechanisms of turnover that are responsible for the accumulation of interspecific differences in rDNA sequences.   相似文献   

14.
15.
The nuclear ribosomal DNA (rDNA) region spanning 5.8S rDNA and the second internal transcribed spacer (ITS-2) of Baylisascaris schroederi isolated from the Qinling subspecies of giant panda in Shaanxi Province, China were amplified and sequenced. Sequence variations in the two rDNA regions within B. schroederi and among species in the family Ascarididae were examined. The lengths of B. schroederi 5.8S and ITS-2 rDNA sequences were 156 bp and 327 bp, respectively, and no nucleotide variation was found in these two rDNA regions among the 20 B. schroederi samples examined, and these ITS-2 sequences were identical to that of B. schroederi isolated from giant panda in Sichuan province, China. The inter-species differences in 5.8S and ITS-2 rDNA sequences among members of the family Ascarididae were 0-1.3% and 0-17.7%, respectively. Phylogenetic relationships among species in the Ascarididae were re-constructed by Bayesian inference (Bayes), maximum parsimony (MP), and maximum likelihood (ML) analyses, based on combined sequences of 5.8S and ITS-2 rDNA. All B. schroederi samples clustered together and sistered to B. transfuga with high posterior probabilities/bootstrap values, which further confirmed that nematodes isolated from the Qinling subspecies of giant panda in Shaanxi Province, China represent B. schroederi. Because of the large number of ambiguously aligned sequence positions (difficulty of inferring homology by positions), ITS-2 sequence alone is likely unsuitable for phylogenetic analyses at the family level, but the combined 5.8S and ITS-2 rDNA sequences provide alternative genetic markers for the identification of B. schroederi and for phylogenetic analysis of parasites in the family Ascarididae.  相似文献   

16.
17.
Iurlova AA  Makunin IV  Zhimulev IF 《Genetika》2010,46(9):1272-1275
Different genome regions differ in replication timing during the S phase. Late-replicating sequences are often underreplicated in the Drosophila salivary-gland polytene chromosomes. The SuUR gene, whose mutation changes the replication time of late-replicating regions in salivary-gland cells, has been identified in Drosophila melanogaster. The SUUR protein lacks homologs by a BLAST search, and only moderate homology is observed between its N-terminal end and chromatin-remodeling proteins of the SWI2/SNF2 family. The gene and the protein were analyzed in insects. Orthologs of the SuUR gene were found in all annotated Drosophila species. The number of amino acid substitutions in the SUUR protein proved to be extremely high, corresponding to that of rapidly evolving genes. Orthologs with low homology were found in mosquitoes Anopheles gambiae, Aedes aegypti, and Culex quinquefasciatus. No orthologs of the SuUR gene were detected beyond Diptera.  相似文献   

18.
AIMS: To establish the specific DNA patterns in 16S rDNA and 16S-23S rDNA intergenic spacer (IGS) regions from different kinds of Serratia marcescens strains using polymerase chain reaction (PCR), restriction fragment length polymorphism (RFLP) and sequences analysis. METHODS AND RESULTS: Two pairs of primers based on the 16S rDNA and 16S-23S rDNA IGS were applied to amplify the rrn operons of two kinds of S. marcescens strains. About 1500 bp for 16S rDNA and four fragments of different sizes for 16S-23S rDNA IGS were obtained. PCR-amplified fragments were analysed by RFLP and sequence analysis. Two distinct restriction patterns revealing three to five bands between two kinds of strains were detected with each specific enzyme. According to the sequence analysis, two kinds of strains showed approximately 97% sequence homology of 16S rDNA. However, there was much difference in the sequences of IGS between the two kinds of strains. Intercistronic tRNA of strains H3010 and A3 demonstrated an order of tRNA of 5'-16S-tRNA(Ala)-tRNA(Ile)-23S-3', but strain B17 harboured the tRNA of 5'-16S-tRNA(Glu)-tRNA(Ile)-23S-3'. CONCLUSIONS: The method was specific, sensitive and accurate, providing a new technique for differentiating different strains from the same species. SIGNIFICANCE AND IMPACT OF THE STUDY: This paper provided the first molecular characterization of 16S rDNA and 16S-23S rDNA IGS from S. marcescens strains.  相似文献   

19.
采用形态分类学方法与以28S rDNA和ITS-5.8S序列为基础的分子系统学研究方法,对采自嘉陵江重庆市磁器口江段的黄颡单尾虫Unicauda pelteobagrusMa,1998进行了形态学和分子生物学的研究。基于28S rDNA数据探讨了黄颡单尾虫以及单尾虫属与相邻种属粘孢子虫间的系统地位;基于5.8S rDNA数据比较分析了粘孢子虫的系统地位。补充了黄颡单尾虫重庆种群形态学信息和28S rDNA、ITS-5.8S rDNA序列的分子信息。  相似文献   

20.
The role of Simulium sanctipauli Vajime & Dunbar (Diptera: Simuliidae) as a vector of Onchocerca volvulus (Leuckart) (Spirurida: Onchocercidae) in the forest zone of central Ghana was studied in the Upper Denkyira district, where onchocerciasis is hyperendemic. Simulium sanctipauli was found to be a highly efficient vector, with a mean of 377 infective (L3) larvae in the heads of 1000 parous and 122 in the heads of 1000 biting flies. The overall infection rate of 44% of the parous flies with L1, L2 and L3 stages of O. volvulus (identity confirmed by polymerase chain reaction) demonstrates marked anthropophily. Female flies dispersed over a wide area and can transmit onchocerciasis up to at least 10 km away from their breeding sites. Annual community-directed treatments with ivermectin did not have a noticeable effect on the infection rates and parasitic loads of fly populations, which were as high 2 months after as 3 months before the distribution of ivermectin. This failure can be attributed to poor coverage, with treatment taken by only 24.4% of the population of the six study villages.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号