首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The Arabidopsis thaliana genome contains five class III homeodomain-leucine zipper genes. We have isolated loss-of-function alleles for each family member for use in genetic analysis. This gene family regulates apical embryo patterning, embryonic shoot meristem formation, organ polarity, vascular development, and meristem function. Genetic analyses revealed a complex pattern of overlapping functions, some of which are not readily inferred by phylogenetic relationships or by gene expression patterns. The PHABULOSA and PHAVOLUTA genes perform overlapping functions with REVOLUTA, whereas the PHABULOSA, PHAVOLUTA, and CORONA/ATHB15 genes perform overlapping functions distinct from REVOLUTA. Furthermore, ATHB8 and CORONA encode functions that are both antagonistic to those of REVOLUTA within certain tissues and overlapping with REVOLUTA in other tissues. Differences in expression patterns explain some of these genetic interactions, whereas other interactions are likely attributable to differences in protein function as indicated by cross-complementation studies.  相似文献   

2.
Roles for Class III HD-Zip and KANADI genes in Arabidopsis root development   总被引:1,自引:0,他引:1  
Hawker NP  Bowman JL 《Plant physiology》2004,135(4):2261-2270
Meristems within the plant body differ in their structure and the patterns and identities of organs they produce. Despite these differences, it is becoming apparent that shoot and root apical and vascular meristems share significant gene expression patterns. Class III HD-Zip genes are required for the formation of a functional shoot apical meristem. In addition, Class III HD-Zip and KANADI genes function in patterning lateral organs and vascular bundles produced from the shoot apical and vascular meristems, respectively. We utilize both gain- and loss-of-function mutants and gene expression patterns to analyze the function of Class III HD-Zip and KANADI genes in Arabidopsis roots. Here we show that both Class III HD-Zip and KANADI genes play roles in the ontogeny of lateral roots and suggest that Class III HD-Zip gene activity is required for meristematic activity in the pericycle analogous to its requirement in the shoot apical meristem.  相似文献   

3.
4.
5.
6.
7.
DORNROSCHEN (DRN) (also known as ENHANCER OF SHOOT REGENERATION1; ESR1) and DRN-LIKE (DRNL; also known as ESR2) are two linked paralogues encoding AP2 domain-containing proteins. drn mutants show embryo cell patterning defects and, similarly to drnl mutants, disrupt cotyledon development at incomplete penetrance. drn drnl double mutants with weak or strong drnl alleles show more highly penetrant and extreme phenotypes, including a pin-like embryo without cotyledons, confirming a high degree of functional redundancy for the two genes in embryo patterning. Altered expression of PIN1::PIN1-GFP and DR5::GFP in drn mutant embryos places DRN upstream of auxin transport and response. A yeast two-hybrid screen with DRN followed by co-immunoprecipitation and bimolecular fluorescence complementation revealed PHAVOLUTA (PHV) to be a protein interaction partner in planta. drn phv double mutants show an increased penetrance of embryo cell division defects. DRNL can also interact with PHV and both DRN and DRNL can heterodimerise with additional members of the class III HD-ZIP family, PHABULOSA, REVOLUTA, CORONA and ATHB8. Interactions involve the PAS-like C-terminal regions of these proteins and the DRN/DRNL AP2 domain.  相似文献   

8.
9.
10.
Establishment of polarity in lateral organs of plants   总被引:2,自引:0,他引:2  
BACKGROUND: Asymmetric development of plant lateral organs initiates by partitioning of organ primordia into distinct domains along their adaxial/abaxial axis. A recent model proposes that a meristem-born signal, acting in a concentration-dependent manner, differentially activates PHABULOSA-like genes, which in turn suppress abaxial-promoting factors. As yet, no abaxial factors have been identified that when compromised give rise to adaxialized organs. RESULTS: Single mutants in either of the closely related genes KANADI1 (KAN1) or KANADI2 (KAN2) have little or no effect on plant morphology. However, in kan1 kan2 double mutant plants, there is a replacement of abaxial cell types by adaxial ones in most lateral organs. The alterations in polarity establishment are associated with expansion in the expression domain of the PHB-like genes and reduction in the expression of the previously described abaxial-promoting YABBY genes. Ectopic expression of either of the KANADI genes throughout leaf primordia results in dramatic transformation of adaxial cell types into abaxial ones, failure of lateral blade expansion, and vascular tissue formation. CONCLUSION: The phenotypes of KANADI loss- and gain-of-function alleles suggest that fine regulation of these genes is at the core of polarity establishment. As such, they are likely to be targets of the PHB-mediated meristem-born signaling that patterns lateral organ primordia. PHB-like genes and the abaxial-promoting KANADI and YABBY genes appear to be expressed throughout primordia anlagen before becoming confined to their corresponding domains as primordia arise. This suggests that the establishment of polarity in plant lateral organs occurs via mutual repression interactions between ab/ad factors after primordium emergence, consistent with the results of classical dissection experiments.  相似文献   

11.
12.
13.
14.
15.
The shoot apical meristem comprises an organized cluster of cells with a central region population of self-maintaining stem cells providing peripheral region cells that are recruited to form differentiated lateral organs. Leaves, the principal lateral organ of the shoot, develop as polar structures typically with distinct dorsoventrality. Interdependent interactions between the meristem and developing leaf provide essential cues that serve both to maintain the meristem and to pattern dorsoventrality in the initiating leaf. A key component of both processes are the class III HD-ZIP genes. Current findings are defining the developmental role of members of this family and are identifying multiple mechanisms controlling expression of these genes.  相似文献   

16.
17.
18.
19.
20.
MicroRNAs (miRNAs) 165 and 166 are able to cleave their target mRNAs of HD-ZIP III genes, thus regulating the functions of these genes. Although it is generally accepted that both miR165 and miR166 perform the same functions in the regulation of HD-ZIP III genes in Arabidopsis, no experimental data are available to support this notion. Recent work has shown that overexpression of miR166 downregulates the expression of three HD-ZIP III genes, ATHB-9/PHV, ATHB-14/PHB and ATHB-15, which in turn recapitulates the phenotypes of simultaneous loss-of-function mutations of these genes. In the March issue of Plant & Cell Physiology, we have demonstrated that overexpression of miR165 leads to the down-regulation of all five HD-ZIP III genes, and concomitantly recapitulates the phenotypes of loss-of-function mutation of IFL1/REV and those of simultaneous loss-of-function mutations of IFL1/REV, ATHB-9/PHV and ATHB-14/PHB. These results indicate that miR165 and miR166 differentially regulate the functions of HD-ZIP III genes in Arabidopsis. In this addendum, we show that overexpression of the antisense form of the miR165a gene leads to formation of amphivasal vascular bundles, a phenotype reminiscent of that of the dominant mutation of IFL1/REV. This finding provides direct evidence for a role of miR165 in regulation of vascular patterning.Key Words: HD-ZIP III genes, miR165, miR166, organ polarity, vascular patterning  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号