共查询到20条相似文献,搜索用时 15 毫秒
1.
High-fidelity chromosomal segregation requires the properly timed establishment of sister-chromatid cohesion mediated by the Cohesin complex, and its resolution at the metaphase-to-anaphase transition. We have examined cell-cycle progression in a yeast strain from which the origin recognition complex protein Orc2 was depleted after the assembly of prereplication complexes. We find that Orc2 depletion causes a delay in progression through mitosis, reflecting activation of both the DNA-damage and Mad2-spindle checkpoints. Surprisingly, sister-chromatid cohesion is impaired in Orc2-depleted cells, although Cohesin subunits are properly associated with chromatin. Reexpression of Orc2 in late G2/M phase restores chromatid cohesion. Finally, the targeting of Orc2 to a specific chromosomal locus suppresses premature sister-chromatid separation locally in a temperature-sensitive cohesin mutant. We conclude that ORC mediates sister-chromatid interaction on a pathway that is additive with Cohesin-mediated pairing. 相似文献
2.
Lengronne A McIntyre J Katou Y Kanoh Y Hopfner KP Shirahige K Uhlmann F 《Molecular cell》2006,23(6):787-799
Two identical sister copies of eukaryotic chromosomes are synthesized during S phase. To facilitate their recognition as pairs for segregation in mitosis, sister chromatids are held together from their synthesis onward by the chromosomal cohesin complex. Replication fork progression is thought to be coupled to establishment of sister chromatid cohesion, facilitating identification of replication products, but evidence for this has remained circumstantial. Here we show that three proteins required for sister chromatid cohesion, Eco1, Ctf4, and Ctf18, are found at, and Ctf4 travels along chromosomes with, replication forks. The ring-shaped cohesin complex is loaded onto chromosomes before S phase in an ATP hydrolysis-dependent reaction. Cohesion establishment during DNA replication follows without further cohesin recruitment and without need for cohesin to re-engage an ATP hydrolysis motif that is critical for its initial DNA binding. This provides evidence for cohesion establishment in the context of replication forks and imposes constraints on the mechanism involved. 相似文献
3.
CTF4 and CTF18 are required for high-fidelity chromosome segregation. Both exhibit genetic and physical ties to replication fork constituents. We find that absence of either CTF4 or CTF18 causes sister chromatid cohesion failure and leads to a preanaphase accumulation of cells that depends on the spindle assembly checkpoint. The physical and genetic interactions between CTF4, CTF18, and core components of replication fork complexes observed in this study and others suggest that both gene products act in association with the replication fork to facilitate sister chromatid cohesion. We find that Ctf18p, an RFC1-like protein, directly interacts with Rfc2p, Rfc3p, Rfc4p, and Rfc5p. However, Ctf18p is not a component of biochemically purified proliferating cell nuclear antigen loading RF-C, suggesting the presence of a discrete complex containing Ctf18p, Rfc2p, Rfc3p, Rfc4p, and Rfc5p. Recent identification and characterization of the budding yeast polymerase kappa, encoded by TRF4, strongly supports a hypothesis that the DNA replication machinery is required for proper sister chromatid cohesion. Analogous to the polymerase switching role of the bacterial and human RF-C complexes, we propose that budding yeast RF-C(CTF18) may be involved in a polymerase switch event that facilities sister chromatid cohesion. The requirement for CTF4 and CTF18 in robust cohesion identifies novel roles for replication accessory proteins in this process. 相似文献
4.
Two compound replication origins in Saccharomyces cerevisiae contain redundant origin recognition complex binding sites
下载免费PDF全文
![点击此处可从《Molecular and cellular biology》网站下载免费的PDF全文](/ch/ext_images/free.gif)
While many of the proteins involved in the initiation of DNA replication are conserved between yeasts and metazoans, the structure of the replication origins themselves has appeared to be different. As typified by ARS1, replication origins in Saccharomyces cerevisiae are <150 bp long and have a simple modular structure, consisting of a single binding site for the origin recognition complex, the replication initiator protein, and one or more accessory sequences. DNA replication initiates from a discrete site. While the important sequences are currently less well defined, metazoan origins appear to be different. These origins are large and appear to be composed of multiple, redundant elements, and replication initiates throughout zones as large as 55 kb. In this report, we characterize two S. cerevisiae replication origins, ARS101 and ARS310, which differ from the paradigm. These origins contain multiple, redundant binding sites for the origin recognition complex. Each binding site must be altered to abolish origin function, while the alteration of a single binding site is sufficient to inactivate ARS1. This redundant structure may be similar to that seen in metazoan origins. 相似文献
5.
The mechanism of sister chromatid cohesion 总被引:15,自引:0,他引:15
Uhlmann F 《Experimental cell research》2004,296(1):80-85
Each of our cells inherit their genetic information in the form of chromosomes from a mother cell. In order that we obtain the full genetic complement, cells need to ensure that replicated chromosomes are accurately split and distributed during cell division. Mistakes in this process lead to aneuploidies, cells with supernumerous or missing chromosomes. Most aneuploid human embryos are not viable, and if they are, they develop severe birth defects. Aneuploidies later in human life are frequently found associated with the development of malignant cancer. DNA replication during S-phase is linked to segregation of the sister copies in mitosis by sister chromatid cohesion. A chromosomal protein complex, cohesin, holds replicated sister DNA strands together after their synthesis. This allows pairs of replication products to be recognised by the spindle apparatus in mitosis for segregation into opposite direction. At anaphase onset, cohesin is destroyed by a site-specific protease, separase. Here I review what we have learned about the molecular mechanism of sister chromatid cohesion. Cohesin forms a large proteinaceous ring that may hold sister chromatids by encircling and topological trapping. To understand how cohesin links newly synthesised replication products, biochemical assays to study the enzymology of cohesin will be required. 相似文献
6.
The origin recognition complex in silencing, cell cycle progression, and DNA replication. 总被引:21,自引:1,他引:21
下载免费PDF全文
![点击此处可从《Molecular biology of the cell》网站下载免费的PDF全文](/ch/ext_images/free.gif)
This report describes the isolation of ORC5, the gene encoding the fifth largest subunit of the origin recognition complex, and the properties of mutants with a defective allele of ORC5. The orc5-1 mutation caused temperature-sensitive growth and, at the restrictive temperature, caused cell cycle arrest. At the permissive temperature, the orc5-1 mutation caused an elevated plasmid loss rate that could be suppressed by additional tandem origins of DNA replication. The sequence of ORC5 revealed a potential ATP binding site, making Orc5p a candidate for a subunit that mediates the ATP-dependent binding of ORC to origins. Genetic interactions among orc2-1 and orc5-1 and other cell cycle genes provided further evidence for a role for the origin recognition complex (ORC) in DNA replication. The silencing defect caused by orc5-1 strengthened previous connections between ORC and silencing, and combined with the phenotypes caused by orc2 mutations, suggested that the complex itself functions in both processes. 相似文献
7.
The regulation of sister chromatid cohesion 总被引:1,自引:0,他引:1
Losada A 《Biochimica et biophysica acta》2008,1786(1):41-48
8.
Takenaka H Makise M Kuwae W Takahashi N Tsuchiya T Mizushima T 《Journal of molecular biology》2004,340(1):29-37
The origin recognition complex (ORC), a possible initiator of chromosomal DNA replication in eukaryotes, binds to ATP through its subunits Orc1p and Orc5p. Orc1p possesses ATPase activity. As for DnaA, the Escherichia coli initiator, the ATP-DnaA complex is active but the ADP-DnaA complex is inactive for DNA replication and, therefore, the ATPase activity of DnaA inactivates the ATP-DnaA complex to suppress the re-initiation of chromosomal DNA replication. We investigated ADP-binding to ORC by a filter-binding assay. The K(d) values for ADP-binding to wild-type ORC and to ORC-1A (ORC containing Orc1p with a defective Walker A motif) were less than 10nM, showing that Orc5p can bind to ADP with a high affinity, similar to ATP. ORC-5A (ORC containing Orc5p with a defective Walker A motif) did not bind to ADP, suggesting that the ADP-Orc1p complex is too unstable to be detected by the filter-binding assay. ADP dissociated more rapidly than ATP from wild-type ORC and ORC-1A. Origin DNA fragments did not stimulate ADP-binding to any type of ORC. In the presence of ADP, ORC could not bind to origin DNA in a sequence-specific manner. Thus, in eukaryotes, the ADP-ORC complex may be unable to initiate chromosomal DNA replication, and in this it resembles the ADP-DnaA complex in prokaryotes. However, overall control may be different. In eukaryotes, the ADP-ORC complex is unstable, suggesting that the ADP-ORC complex might rapidly become an ATP-ORC complex; whereas in prokaryotes, ADP remains bound to DnaA, keeping DnaA inactive, and preventing re-initiation for some periods. 相似文献
9.
A SUMO-like domain protein, Esc2, is required for genome integrity and sister chromatid cohesion in Saccharomyces cerevisiae
下载免费PDF全文
![点击此处可从《Genetics》网站下载免费的PDF全文](/ch/ext_images/free.gif)
The ESC2 gene encodes a protein with two tandem C-terminal SUMO-like domains and is conserved from yeasts to humans. Previous studies have implicated Esc2 in gene silencing. Here, we explore the functional significance of SUMO-like domains and describe a novel role for Esc2 in promoting genome integrity during DNA replication. This study shows that esc2Delta cells are modestly sensitive to hydroxyurea (HU) and defective in sister chromatid cohesion and have a reduced life span, and these effects are enhanced by deletion of the RRM3 gene that is a Pif1-like DNA helicase. esc2Delta rrm3Delta cells also have a severe growth defect and accumulate DNA damage in late S/G(2). In contrast, esc2Delta does not enhance the HU sensitivity or sister chromatid cohesion defect in mrc1Delta cells, but rather partially suppresses both phenotypes. We also show that deletion of both Esc2 SUMO-like domains destabilizes Esc2 protein and functionally inactivates Esc2, but this phenotype is suppressed by an Esc2 variant with an authentic SUMO domain. These results suggest that Esc2 is functionally equivalent to a stable SUMO fusion protein and plays important roles in facilitating DNA replication fork progression and sister chromatid cohesion that would otherwise impede the replication fork in rrm3Delta cells. 相似文献
10.
11.
The making and breaking of sister chromatid cohesion 总被引:8,自引:0,他引:8
Cohen-Fix O 《Cell》2001,106(2):137-140
12.
Merkle CJ Karnitz LM Henry-Sánchez JT Chen J 《The Journal of biological chemistry》2003,278(32):30051-30056
A growing body of evidence suggests that establishment of sister chromatid cohesion is dependent on replication fork passage over a precohesion area. In Saccharomyces cerevisiae, this process involves an alternative replication factor C (RFC) complex that contains the four small RFC subunits as well as CTF18, CTF8, and DCC1. Here, we show that an evolutionarily conserved homologous complex exists in the nucleus of human cells. We demonstrate that hCTF18, hCTF8, and hDCC1 interact with each other as well as with the p38 subunit of RFC. This alternative RFC-containing complex interacts with proliferating cell nuclear antigen but not with the Rad9/Rad1/Hus1 complex, a proliferating cell nuclear antigen-like clamp involved in the DNA damage response. hCTF18 preferentially binds chromatin during S phase, suggesting a role during replication. Our data provide evidence for the existence of an alternative RFC complex with a probable role in mammalian sister chromatid cohesion establishment. 相似文献
13.
High-fidelity chromosome segregation requires that the sister chromatids produced during S phase also become paired during S phase. Ctf7p (Eco1p) is required to establish sister chromatid pairing specifically during DNA replication. However, Ctf7p also becomes active during G(2)/M in response to DNA damage. Ctf7p is a phosphoprotein and an in vitro target of Cdc28p cyclin-dependent kinase (CDK), suggesting one possible mechanism for regulating the essential function of Ctf7p. Here, we report a novel synthetic lethal interaction between ctf7 and cdc28. However, neither elevated CDC28 levels nor CDC28 Cak1p-bypass alleles rescue ctf7 cell phenotypes. Moreover, cells expressing Ctf7p mutated at all full- and partial-consensus CDK-phosphorylation sites exhibit robust cell growth. These and other results reveal that Ctf7p regulation is more complicated than previously envisioned and suggest that CDK acts in sister chromatid cohesion parallel to Ctf7p reactions. 相似文献
14.
Cohesion between sister chromatids, mediated by the chromosomal cohesin complex, is a prerequisite for their alignment on the spindle apparatus and segregation in mitosis. Budding yeast cohesin first associates with chromosomes in G1. Then, during DNA replication in S-phase, the replication fork-associated acetyltransferase Eco1 acetylates the cohesin subunit Smc3 to make cohesin’s DNA binding resistant to destabilization by the Wapl protein. Whether stabilization of cohesin molecules that happen to link sister chromatids is sufficient to build sister chromatid cohesion, or whether additional reactions are required to establish these links, is not known. In addition to Eco1, several other factors contribute to cohesion establishment, including Ctf4, Ctf18, Tof1, Csm3, Chl1 and Mrc1, but little is known about their roles. Here, we show that each of these factors facilitates cohesin acetylation. Moreover, the absence of Ctf4 and Chl1, but not of the other factors, causes a synthetic growth defect in cells lacking Eco1. Distinct from acetylation defects, sister chromatid cohesion in ctf4Δ and chl1Δ cells is not improved by removing Wapl. Unlike previously thought, we do not find evidence for a role of Ctf4 and Chl1 in Okazaki fragment processing, or of Okazaki fragment processing in sister chromatid cohesion. Thus, Ctf4 and Chl1 delineate an additional acetylation-independent pathway that might hold important clues as to the mechanism of sister chromatid cohesion establishment. 相似文献
15.
Fission yeast Rad50 stimulates sister chromatid recombination and links cohesion with repair. 总被引:8,自引:0,他引:8
下载免费PDF全文
![点击此处可从《The EMBO journal》网站下载免费的PDF全文](/ch/ext_images/free.gif)
To study the role of Rad50 in the DNA damage response, we cloned and deleted the Schizosaccharomyces pombe RAD50 homologue. The deletion is sensitive to a range of DNA-damaging agents and shows dynamic epistatic interactions with other recombination-repair genes. We show that Rad50 is necessary for recombinational repair of the DNA lesion at the mating-type locus and that rad50Delta shows slow DNA replication. We also find that Rad50 is not required for slowing down S phase in response to hydroxy urea or methyl methanesulfonate (MMS) treatment. Interestingly, in rad50Delta cells, the recombination frequency between two homologous chromosomes is increased at the expense of sister chromatid recombination. We propose that Rad50, an SMC-like protein, promotes the use of the sister chromatid as the template for homologous recombinational repair. In support of this, we found that Rad50 functions in the same pathway for the repair of MMS-induced damage as Rad21, the homologue of the Saccharomyces cerevisiae Scc1 cohesin protein. We speculate that Rad50 interacts with the cohesin complex during S phase to assist repair and possibly re-initiation of replication after replication fork collapse. 相似文献
16.
Scc2 couples replication licensing to sister chromatid cohesion in Xenopus egg extracts 总被引:2,自引:0,他引:2
The cohesin complex is a central player in sister chromatid cohesion, a process that ensures the faithful segregation of chromosomes in mitosis and meiosis. Previous genetic studies in yeast show that Scc2/Mis4, a HEAT-repeat-containing protein, is required for the loading of cohesin onto chromatin. In this study, we have identified two isoforms of Scc2 in humans and Xenopus (termed Scc2A and Scc2B), which are encoded by a single gene but have different carboxyl termini created by alternative splicing. Both Scc2A and Scc2B bind to chromatin concomitant with cohesin during DNA replication in Xenopus egg extracts. Simultaneous immunodepletion of Scc2A and Scc2B from the extracts impairs the association of cohesin with chromatin, leading to severe defects in sister chromatid pairing in the subsequent mitosis. The loading of Scc2 onto chromatin is inhibited in extracts treated with geminin but not with p21(CIP1), suggesting that this step depends on replication licensing but not on the initiation of DNA replication. Upon mitotic entry, Scc2 is removed from chromatin through a mechanism that requires cdc2 but not aurora B or polo-like kinase. Our results suggest that vertebrate Scc2 couples replication licensing to sister chromatid cohesion by facilitating the loading of cohesin onto chromatin. 相似文献
17.
In the yeast Saccharomyces cerevisiae the nucleolar organiser region (NOR) is located on chromosome XII. It contains 100-200 copies of rDNA--a minimum of 20 rDNA genes in tandem--and is termed the RDN locus. Yeast cells may exist in either haploid or diploid form. There are two forms of life cycle: haploid and diploid cells double by mitosis, and diploid cells are reduced to the haploid state by meiosis. Diploid cells have two homologous chromosomes for each of the 16 chromosomes. They are usually of the same size. However, in this study it is shown that homologous chromosomes XII can become different in size due to unequal sister chromatid exchange during mitosis in 'old' cells. 相似文献
18.
Saccharomyces cerevisiae DNA polymerase epsilon and polymerase sigma interact physically and functionally,suggesting a role for polymerase epsilon in sister chromatid cohesion
下载免费PDF全文
![点击此处可从《Molecular and cellular biology》网站下载免费的PDF全文](/ch/ext_images/free.gif)
Edwards S Li CM Levy DL Brown J Snow PM Campbell JL 《Molecular and cellular biology》2003,23(8):2733-2748
The large subunit of Saccharomyces cerevisiae DNA polymerase epsilon, Pol2, comprises two essential functions. The N terminus has essential DNA polymerase activity. The C terminus is also essential, but its function is unknown. We report here that the C-terminal domain of Pol2 interacts with polymerase sigma (Pol sigma), a recently identified, essential nuclear nucleotidyl transferase encoded by two redundant genes, TRF4 and TRF5. This interaction is functional, since Pol sigma stimulates the polymerase activity of the Pol epsilon holoenzyme significantly. Since Trf4 is required for sister chromatid cohesion as well as for completion of S phase and repair, the interaction suggested that Pol epsilon, like Pol sigma, might form a link between the replication apparatus and sister chromatid cohesion and/or repair machinery. We present evidence that pol2 mutants are defective in sister chromatid cohesion. In addition, Pol2 interacts with SMC1, a subunit of the cohesin complex, and with ECO1/CTF7, required for establishing sister chromatid cohesion; and pol2 mutations act synergistically with smc1 and scc1. We also show that trf5 Delta mutants, like trf4 Delta mutants, are defective in DNA repair and sister chromatid cohesion. 相似文献
19.
Rad51 requires a number of other proteins, including the Rad51 paralogs, for efficient recombination in vivo. Current evidence suggests that the yeast Rad51 paralogs, Rad55 and Rad57, are important in formation or stabilization of the Rad51 nucleoprotein filament. To gain further insights into the function of the Rad51 paralogs, reporters were designed to measure spontaneous or double-strand break (DSB)-induced sister or nonsister recombination. Spontaneous sister chromatid recombination (SCR) was reduced 6000-fold in the rad57 mutant, significantly more than in the rad51 mutant. Although the DSB-induced recombination defect of rad57 was suppressed by overexpression of Rad51, elevated temperature, or expression of both mating-type alleles, the rad57 defect in spontaneous SCR was not strongly suppressed by these same factors. In addition, the UV sensitivity of the rad57 mutant was not strongly suppressed by MAT heterozygosity, even though Rad51 foci were restored under these conditions. This lack of suppression suggests that Rad55 and Rad57 have different roles in the recombinational repair of stalled replication forks compared with DSB repair. Furthermore, these data suggest that most spontaneous SCR initiates from single-stranded gaps formed at stalled replication forks rather than DSBs. 相似文献
20.
We used a genetic assay to monitor the behavior of sister chromatids during the cell cycle. We show that the ability to induce sister chromatid exchanges (SCE) with ionizing radiation is maximal in budded cells with undivided nuclei and then decreases prior to nuclear division. SCE can be induced in cells arrested in G2 using either nocodazole or cdc mutants. These data show that sister chromatids have two different states prior to nuclear division. We suggest that the sister chromatids of cir. III, a circular derivative of chromosome III, separate (anaphase A) prior to spindle elongation (anaphase B). Other interpretations are also discussed. SCE can be induced in cdc mutants that arrest in G2 and in nocodazole-treated cells, suggesting that mitotic checkpoints arrest cells prior to sister chromatid separation. 相似文献