首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The gene encoding porin protein F of Pseudomonas aeruginosa was cloned onto a cosmid vector into Escherichia coli. Protein F was expressed as the predominant outer membrane protein in a porin-deficient E. coli background and was clearly visible on one-dimensional sodium dodecyl sulfate-polyacrylamide gels in a porin-sufficient background. The identity of the protein F from the E. coli clone and native P. aeruginosa protein F was demonstrated by their identical mobilities on sodium dodecyl sulfate-polyacrylamide gel electrophoretograms, 2-mercaptoethanol modifiabilities, and reactivities with monoclonal antibodies specific of two separate epitopes of protein F. In the course of gene subcloning, a 2-kilobase DNA fragment was isolated, with an apparent truncation of the part of the gene encoding the carboxy terminus of protein F. This subclone produced a 24,000-molecular-weight, outer membrane-associated, truncated protein F derivative which was not 2-mercaptoethanol modifiable and which reacted with only one of the two classes of protein F-specific monoclonal antibodies. The 2-kilobase fragment was used in Southern blot hybridizations to construct a restriction map of the cloned and subcloned fragments and to demonstrate with restriction digests of whole P. aeruginosa DNA that only one copy of the protein F gene was present in the P. aeruginosa chromosome. The protein F produced by the original cosmid clone in a porin-deficient E. coli background was purified. To demonstrate retention of porin function after cloning, the protein F from the E. coli clone was incorporated into black lipid bilayer membranes. Two major classes of channels were revealed. The predominant class of channels had an average conductance of 0.36 nS in 1 M KCl, whereas larger channels (4 to 7 nS) were seen at a lower frequency. Similar channel sizes were observed for porin protein F purified by the same method from P. aeruginosa outer membranes.  相似文献   

2.
Abstract The outer membrane proteins of several prominent bacterial pathogens demonstrate substantial variation in their surface antigenic epitopes. To determine if this was also true for Pseudomonas aeruginosa outer membraine protein OprF, gene sequencing of a serotype 5 isolate was performed to permit comparison with the published serotype 12 oprF gene sequence. Only 16 nucleotide substitutions in the 1053 nucleotide coding region were observed; none of these changed the amino acid sequence. A panel of 10 monoclonal antibodies (mAbs) reacted with each of 46 P. aeruginosa strains representing all 17 serotype strains, 12 clinical isolates, 15 environmental isolates and 2 laboratory isolates. Between two and eight of these mAbs also reacted with proteins from representatives of the rRNA homology group I of the Pseudomonadaceae . Nine of the ten mAbs recognized surface antigenic epitopes as determined by indirect immunofluorescence techniques and their ability to opsonize P. aeuroginosa for phagocytosis. These epitopes were partially masked by lipopolysacharide side chains as revealed using a side chain-deficient mutant. It is concluded that OprF is a highly conserved protein with several conserved surface antigenic epitopes.  相似文献   

3.
A mutant of Pseudomonas aeruginosa severely deficient in outer membrane protein F levels was isolated by screening heavily mutagenized strains for membrane protein alterations on sodium dodecyl sulphate-polyacrylamide gel electrophoresis. To provide a basis for phenotypic comparison, three independent spontaneous revertants with normal protein F levels were isolated. Neither the protein F-deficient mutant nor its revertants had gross surface alterations as judged by their sensitivities to 31 phages with diverse receptors and their low degrees of leakage of periplasmic beta-lactamase into the supernatant. Outer membrane permeability was measured in whole cells by examining the rates of hydrolysis of a chromogenic beta-lactam, nitrocefin, by periplasmic RP1-encoded beta-lactamase. It was found that the outer membrane permeabilities of wild-type and protein F revertant strains were similar, but low when compared with those of Escherichia coli and an antibiotic-supersusceptible mutant Z61 of P. aeruginosa. The loss of protein F caused a further significant decrease in outer membrane permeability. The results suggest that protein F is a pore-forming protein in vivo and that only a small proportion, as few as 1 in 400, of the protein F molecules form active functional channels in vivo.  相似文献   

4.
The interaction of phosphate ions with the Pseudomonas aeruginosa anion-specific protein P channel was probed. The single-channel conductance of protein P incorporated into planar lipid bilayer membranes in the presence of 0.3 M H2PO-4 was shown to be 6.0 pS, demonstrating that protein P channels allowed the permeation of phosphate. When large numbers of protein P channels were incorporated into lipid bilayer membranes in the presence of 40 mM Cl-, addition of small concentrations of phosphate resulted in reduction of macroscopic Cl- conductance in a dose- (and pH-) dependent fashion. This allowed calculation of an I50 value of e.g. 0.46 mM at pH 7.0, suggesting that the affinity of protein P for its normal substrate phosphate was at least 60-100-fold greater than the affinity of the channel for other ions such as chloride. Pyrophosphate and the phosphate analogue, arsenate, also inhibited macroscopic Cl- conductance through protein P with I50 values at pH 7.0 of 4.9 mM and 1.3 mM, respectively. To probe the nature of the phosphate binding site, the epsilon-amino groups of available lysine residues of protein P were chemically modified. Acetylation and carbamylation which produced uncharged, modified lysines destroyed both the anion (e.g. Cl-) binding site and the phosphate binding site as determined by single-channel experiments and macroscopic conductance inhibition experiments respectively. Nevertheless, the modified proteins still retained their trimeric configuration and their ability to reconstitute single channels in lipid bilayer membranes. Methylation, which allowed retention of the charge on the modified lysine residues, increased the Kd of the channel for Cl- 33-fold and the I50 for phosphate inhibition of macroscopic Cl- conductance 2.5-4-fold. A molecular model for the phosphate binding site of the protein P channel is presented.  相似文献   

5.
Earlier studies proved that Pseudomonas aeruginosa OprD is a specific porin for basic amino acids and imipenem. It was also considered to function as a nonspecific porin that allowed the size-dependent uptake of monosaccharides and facilitation of the uptake of quinolone and other antibiotics. In the present study, we utilized P. aeruginosa strains with genetically defined levels of OprD to characterize the in vivo substrate selectivity of this porin. An oprD::omega interposon mutant was constructed by gene replacement utilizing an in vitro mutagenized cloned oprD gene. In addition, OprD was overexpressed from the lac promoter by cloning the oprD gene into the broad-host-range plasmid pUCP19. To test the substrate selectivity, strains were grown in minimal medium with limiting concentrations of the carbon sources glucose, gluconate, or pyruvate. In minimal medium with 0.5 mM gluconate, the growth rates of the parent strain H103 and its oprD::omega mutant H729 were only 60 and 20%, respectively, of that of the OprD-overexpressing strain H103(pXH2). In contrast, no significant differences were observed in the growth rates of these three strains on glucose or pyruvate, indicating that OprD selectively facilitated the transport of gluconate. To determine the role of OprD in antibiotic uptake, nine strains representing different levels of OprD and OprF were used to determine the MICs of different antibiotics. The results clearly demonstrated that OprD could be utilized by imipenem and meropenem but that, even when substantially overexpressed, it could not be significantly utilized by other beta-lactams, quinolones, or aminoglycosides. In addition, competition experiments confirmed that imipenem had common binding sites with basic amino acids in the OprD channel, but not with gluconate or glucose.  相似文献   

6.
A Tn501 mutant of Pseudomonas aeruginosa resistant to imipenem and lacking the imipenem-specific outer membrane porin protein OprD was isolated. The mutation could be complemented to imipenem susceptibility and OprD-sufficiency by a cloned 6-kb EcoRI-PstI fragment of DNA from the region of chromosome of the wild-type strain surrounding the site of Tn501 insertion. However, this fragment did not contain the oprD structural gene as judged by its inability to hybridize with an oligonucleotide corresponding to the N-terminal amino acid sequence of OprD. DNA sequencing of 3.9 kb of the region surrounding the Tn501 insertion site revealed three large open reading frames, one of which would be interrupted by the Tn501 insertion in the mutant. This latter open reading frame, named opdE (for putative regulator of oprD expression), predicted a hydrophobic protein of M(r) 41,592. Using the above-mentioned oligonucleotide, the oprD structural gene was cloned and expressed in Escherichia coli on a 2.1-kb Bam HI-KpnI fragment. DNA sequencing predicted a 420 amino acid mature OprD protein with a 23 amino acid signal sequence.  相似文献   

7.
Pseudomonas aeruginosa outer membrane protein F was purified by extraction from polyacrylamide gels of cell envelope proteins of anEscherichia coli strain expressing the cloned gene for protein F. Antisera directed against protein F purified fromP. aeruginosa PAO1 reacted with thisE. coli strain by immunofluorescence assay and immunoblotting, whereas these antisera were nonreactive withE. coli strains lacking thePseudomonas protein F gene. The protein F purified from thisE. coli strain was used to immunize mice by intramuscular injection of 10 µg of protein F preparation on days 1 and 14, followed by burn and challenge of the mice on day 28. As compared with control mice immunized withE. coli K-12 lipopolysaccharide, immunization with theE. coli-derived protein F afforded significant protection against subsequent challenge with heterologous Fisher-Devlin immunotype 5 and 6 strains ofP. aeruginosa. Antisera from mice immunized with theE. coli-derived protein F reacted at bands corresponding to protein F and 2-mercaptoethanol-modified protein F upon immunoblotting against cell envelope proteins of the PAO1, immunotype 5, and immunotype 6 strains ofP. aeruginosa and theE. coli strain containing the cloned F gene, but failed to react at these sites in anE. coli strain lacking the F gene. These data demonstrate thatP. aeruginosa protein F produced inE. coli through genetic engineering techniques retains its vaccine efficacy in the complete absence of anyP. aeruginosa lipopolysaccharide.  相似文献   

8.
The gene encoding the outer membrane phosphate-selective porin protein P from Pseudomonas aeruginosa was cloned into Escherichia coli. The protein product was expressed and transported to the outer membrane of an E. coli phoE mutant and assembled into functional trimers. Expression of a product of the correct molecular weight was confirmed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and Western blot (immunoblot) analysis, using polyclonal antibodies to protein P monomer and trimer forms. Protein P trimers were partially purified from the E. coli clone and shown to form channels with the same conductance as those formed by protein P from P. aeruginosa. The location and orientation of the protein P-encoding (oprP) gene on the cloned DNA was identified by three methods: (i) mapping the insertion point of transposon Tn501 in a previously isolated P. aeruginosa protein P-deficient mutant; (ii) hybridization of restriction fragments from the cloned DNA to an oligonucleotide pool synthesized on the basis of the amino-terminal protein sequence of protein P; and (iii) fusion of a PstI fragment of the cloned DNA to the amino terminus of the beta-galactosidase gene of pUC8, producing a fusion protein that contained protein P-antigenic epitopes. Structural analysis of the cloned DNA and P. aeruginosa chromosomal DNA revealed the presence of two adjacent PstI fragments which cross-hybridized, suggesting a possible gene duplication. The P-related (PR) region hybridized to the oligonucleotide pool described above. When the PstI fragment which contained the PR region was fused to the beta-galactosidase gene of pUC8, a fusion protein was produced which reacted with a protein P-specific antiserum. However, the restriction endonuclease patterns of the PR region and the oprP gene differed significantly beyond the amino-terminal one-third of the two genes.  相似文献   

9.
The protein F-deficient cells of Pseudomonas aeruginosa were previously found to be more susceptible to osmotic shock than the sufficient cells (Gotoh et al., J. Bacteriol., in press). The protein F-deficient cells were observed by the thin-section method of electron microscopy to determine the effects of osmotic shock. The osmotic shock induced breakage of the protein F-deficient outer membrane, while it had no effect on the protein F-sufficient outer membrane. These results suggested that the cells lost their viability by the osmotic shock caused by fragility of the outer membrane.  相似文献   

10.
A filtration technique has been developed to trap the peptidoglycan sacculus for rapid extraction of the outer membrane protein F of Pseudomonas aeruginosa. The method consists of the following three steps: (i) removal of cell components except peptidoglycan associated with some proteins, (ii) trapping of peptidoglycan with a glass filter and (iii) extraction with a hot SDS solution of proteins, mainly F protein, associated with peptidoglycan. The method is simple and rapid, providing for efficient screening for protein F-deficient mutants of P. aeruginosa. Using this method of screening, three mutants were isolated among 500 mutagenized clones.  相似文献   

11.
To investigate the functional role of protein F of the outer membrane of Pseudomonas aeruginosa, we isolated mutants devoid of protein F, and the defective gene was transferred to a wild-type strain by plasmid FP5-mediated conjugation. Chemical analyses of the protein F-deficient outer membrane revealed that the amount of outer membrane protein was reduced to 72 to 74% of that of the protein F-sufficient strain and that lipopolysaccharides and phospholipids increased to 117 to 123% and 135 to 136%, respectively. The mutants and the transconjugant showed the following characteristics: (i) growth rates of protein F-deficient strains in low-osmolarity medium (e.g., L broth containing 0.1% NaCl) were less than 1/10 the rate of the protein F-sufficient strain; (ii) protein F-deficient cells were rounded, and the outer membrane formed large protruded blebs; and (iii) the outer membrane became physically fragile, since a significant amount of periplasmic proteins leaked out and the cells became highly sensitive to osmotic shock. The results suggested that protein F plays an important role in morphogenesis and in maintaining the integrity of the outer membrane. Determination of the diffusion rates of saccharides and beta-lactam antibiotics showed that the protein F-deficient outer membrane had no detectable transport defect compared with the protein F-sufficient outer membrane. The MICs of antibiotics for the protein F-deficient strains were nearly identical to those for the protein F-sufficient strain.  相似文献   

12.
Study showed that synthesis of specific IgG occurs in rabbits immunized with recombinant outer membrane protein F (OprF) of Pseudomonas aeruginosa and that these antibodies inhibit grow of P. aeruginosa in vitro. In vivo studies on mice showed that rabbit hyperimmune sera and recombinant OprF are both able to protect animals from intraperitoneal challenge with P. aeruginosa.  相似文献   

13.
The oprF gene, expressing Pseudomonas aeruginosa major outer membrane protein OprF, was subjected to semi-random linker mutagenesis by insertion of a 1.3 kb Hincll kanamycin-resistance fragment from plasmid pUC4KAPA into multiple blunt-ended restriction sites in the oprF gene. The kanamycin-resistance gene was then removed by Pstl digestion, which left a 12 nucleotide pair linker residue. Nine unique clones were identified that contained such linkers at different locations within the oprF gene and were permissive for the production of full-length OprF variants. In addition, one permissive site-directed insertion, one non-permissive insertion and one carboxy-terminal insertion leading to proteolytic truncation were also identified. These mutants were characterized by DNA sequencing and reactivity of the OprF variants with a bank of 10 OprF-specific monoclonal antibodies. Permissive clones produced OprF variants that were shown to be reactive with the majority of these monoclonal antibodies, except where the insertion was suspected of interrupting the epitope for the specific monoclonal antibody. In addition, these variants were shown to be 2-mercaptoethanol modifiable, to be resistant to trypsin cleavage in intact cells and partly cleaved to a high-molecular-weight core fragment in outer membranes and, where studied, to be accessible to indirect immunofluorescenee labelling in intact cells by monoclonal antibodies specific for surface epitopes. Based on these data, a revised structural model for OprF is proposed.  相似文献   

14.
A Pseudomonas aeruginosa outer membrane protein F-deficient omega-insertion mutant strain H636, in contrast to its protein F-sufficient parent strain H103, was unable to grow on unsupplemented Proteose Peptone no. 2 broth (Difco Laboratories, Detroit, Mich.). Addition of high concentrations of NaCl, KCl, glucose, sucrose, or potassium succinate permitted growth of strain H636 at rates approaching those of the parent strain H103. Strain H636 cells were 33% shorter and had a 46% smaller cross-sectional area than did the parent strain growing at similar rates on the same medium. These properties of the oprF::omega mutant were analogous to those previously observed for Escherichia coli ompA mutants in an lpp (Braun lipoprotein-deficient) mutant background. Therefore, we compared P. aeruginosa protein F and the E. coli OmpA protein. In addition to many similarities previously described, sequence alignment demonstrated substantial amino acid sequence homology throughout the carboxy-terminal 168 to 180 amino acids of the two proteins. Consistent with this observation, polyclonal antiserum specific for OmpA reacted on Western blots (immunoblots) with protein F. Expression of protein F from the cloned oprF gene in an E. coli ompA lpp double mutant resulted in a 1.7-fold increase in cell length and a 2.1-fold increase in cross-sectional area compared with values for the same mutant containing only the plasmid vector onto which the oprF gene had been cloned. These results favor a structural role for P. aeruginosa protein F and suggest that it is strongly related to the E. coli OmpA protein.  相似文献   

15.
In Gram-negative bacteria that do not have porins, most water-soluble and small molecules are taken up by substrate-specific channels belonging to the OprD family. We report here the X-ray crystal structure of OpdK, an OprD family member implicated in the uptake of vanillate and related small aromatic acids. The OpdK structure reveals a monomeric, 18-stranded beta barrel with a kidney-shaped central pore. The OpdK pore constriction is relatively wide for a substrate-specific channel (approximately 8 A diameter), and it is lined by a positively charged patch of arginine residues on one side and an electronegative pocket on the opposite side-features likely to be important for substrate selection. Single-channel electrical recordings of OpdK show binding of vanillate to the channel, and they suggest that OpdK forms labile trimers in the outer membrane. Comparison of the OpdK structure with that of Pseudomonas aeruginosa OprD provides the first qualitative insights into the different substrate specificities of these closely related channels.  相似文献   

16.
Pseudomonas aeruginosa OprM is a protein involved in multiple-antibiotic resistance as the outer membrane component for the MexA-MexB-OprM efflux system. Planar lipid bilayer experiments showed that OprM had channel-forming activity with an average single-channel conductance of only about 80 pS in 1 M KCl. The gene encoding OprM was subjected to insertion mutagenesis by cloning of a foreign epitope from the circumsporozoite form of the malarial parasite Plasmodium falciparum into 11 sites. In Escherichia coli, 8 of the 11 insertion mutant genes expressed proteins at levels comparable to those obtained with the wild-type gene and the inserted malarial epitopes were surface accessible as assessed by indirect immunofluorescence. When moved to a P. aeruginosa OprM-deficient strain, seven of the insertion mutant genes expressed proteins at variable levels comparable to that of wild-type OprM and three of these reconstituted MIC profiles resembling those of the wild-type protein, while the other mutant forms showed variable MIC results. Utilizing the data from these experiments, in conjunction with multiple sequence alignments and structure predictions, an OprM topology model with 16 beta strands was proposed.  相似文献   

17.
A rapid colony immunoblot screening procedure was used to demonstrate the surface localization of porin protein F on bacterial colonies of Pseudomonas aeruginosa. By this method, we demonstrated that protein F was accessible to four different specific monoclonal antibodies in a wide variety of both mucoid and nonmucoid P. aeruginosa strains. Controls were performed to demonstrate that, using this procedure, only surface-exposed epitopes bound monoclonal antibodies and that nonspecific binding of monoclonal antibodies either to cells lacking protein F or to mucoid exopolysaccharide did not occur. Monoclonal antibodies MA4-4, MA2-10, and MA4-10, specific for protein F, also interacted with colonies of Pseudomonas putida and Pseudomonas syringae, whereas the protein F specific monoclonal antibody MA5-8 interacted only with P. aeruginosa strains. Using the above-named monoclonal antibodies, we investigated the antigenic structure of protein F. Monoclonal antibodies MA4-4, MA2-10, and MA4-10 bound to 29-31 kilodalton proteolytic fragments produced after papain or trypsin digestion of purified protein F or of protein F in outer membranes or intact cells. Antibody MA5-8 did not interact with proteolytically digested protein F but did interact with two of the six fragments produced after partial cyanogen bromide cleavage of protein F. Antibodies MA4-4, MA2-10, and MA4-10 did not interact with protein F after reduction of its internal disulphide bonds with 2-mercaptoethanol; in contrast, the reactivity of MA5-8 was unaffected. This data suggests that there are at least two distinct highly conserved surface epitopes on porin protein F.  相似文献   

18.
Pseudomonas aeruginosa is one of the pathogenic bacteria which utilize binding of the host plasminogen (Plg) to promote their invasion throughout the host tissues. In the present study, we confirmed that P. aeruginosa exhibits binding affinity for human plasminogen. Furthermore, we showed that the protein detected on the cell wall of P. aeruginosa and binding human plasminogen is an enolase-like protein. The hypothesis that alpha-enolase, a cytoplasmatic glycolytic enzyme, resides also on the cell surface of the bacterium was supported by electron microscopy analysis. The plasminogen-binding activity of bacterial cell wall outer membrane enolase-like protein was examined by immunoblotting assay.  相似文献   

19.
20.
The oprP gene encoding the Pseudomonas aeruginosa phosphate-specific outer membrane porin protein OprP was sequenced. Comparison of the derived amino acid sequence with the known sequences of other bacterial porins demonstrated that OprP could be no better aligned to these porin sequences than it could to the periplasmic phosphate-binding protein PhoS of Escherichia coli. Southern hybridization and restriction mapping of the oprP gene in 37 clinical isolates and the 17 serotype strains of P. aeruginosa revealed that restriction sites in the vicinity of the oprP gene were highly conserved. Several species from the Pseudomonas fluorescens rRNA homology group contained DNA that hybridized to an oprP gene probe.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号