首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
3.
The Drosophila melanogaster gene Anaplastic Lymphoma Kinase (Alk) regulates a signal transduction pathway required for founder cell specification within the visceral muscle of the developing embryonic midgut. During embryonic development, the midgut visceral muscle is lined by the endodermal cell layer. In this paper, we have investigated signalling between these two tissues. Here, we show that Alk function is required for decapentaplegic (Dpp) expression and subsequent signalling via the Mad pathway in the developing gut. We propose that not only does Alk signalling regulate founder cell specification and thus fusion in the developing visceral muscle, but that Alk also regulates Dpp signalling between the visceral muscle and the endoderm. This provides an elegant mechanism with which to temporally coordinate visceral muscle fusion and later events in midgut development.  相似文献   

4.
The cellular events that govern patterning during animal development must be precisely regulated. This is achieved by extrinsic factors and through the action of both positive and negative feedback loops. Wnt/Wg signals are crucial across species in many developmental patterning events. We report that Drosophila nemo (nmo) acts as an intracellular feedback inhibitor of Wingless (Wg) and that it is a novel Wg target gene. Nemo antagonizes the activity of the Wg signal, as evidenced by the finding that reduction of nmo rescues the phenotypic defects induced by misexpression of various Wg pathway components. In addition, the activation of Wg-dependent gene expression is suppressed in wing discs ectopically expressing nmo and enhanced cell autonomously in nmo mutant clones. We find that nmo itself is a target of Wg signaling in the imaginal wing disc. nmo expression is induced upon high levels of Wg signaling and can be inhibited by interfering with Wg signaling. Finally, we observe alterations in Arm stabilization upon modulation of Nemo. These observations suggest that the patterning mechanism governed by Wg involves a negative feedback circuit in which Wg induces expression of its own antagonist Nemo.  相似文献   

5.
6.
We have isolated parcas (pcs) in a screen to identify novel regulators of muscle morphogenesis. Pcs is expressed in the ovary and oocyte during oogenesis and again in the embryo, specifically in the developing mesoderm, throughout muscle development. pcs is first required in the ovary during oogenesis for patterning and segmentation of the early Drosophila embryo due primarily to its role in the regulation of Oskar (Osk) levels. In addition to the general patterning defects observed in embryos lacking maternal contribution of pcs, these embryos show defects in Wingless (Wg) expression, causing losses of Wg-dependent cell types within the affected segment. pcs activity is required again later during embryogenesis in the developing mesoderm for muscle development. Loss and gain of function studies demonstrate that pcs is necessary at distinct times for muscle specification and morphogenesis. Pcs is predicted to be a novel regulator of non-receptor tyrosine kinase (NRTK) signaling. We have identified one target of Pcs regulation, the Drosophila Tec kinase Btk29A. While Btk29A appears to be regulated by Pcs during its early role in patterning and segmentation, it does not appear to be a major target of Pcs regulation during muscle development. We propose that Pcs fulfils its distinct roles during development by the regulation of multiple NRTKs.  相似文献   

7.
8.
9.
During vertebrate embryonic development, a key to unraveling specific functions of gene products is the capability to manipulate expression of the gene of interest at the desired time and place. For this, we developed a 'microelectroporation' technique by which DNA can be locally introduced into a targeted site of avian embryos, restricting spatial expression of the protein products during development. This technique involved injection of DNA solution in ovo around the target tissue and pinpoint application of an electric field by tungsten electrodes, allowing efficient and reproducible targeted gene transfer, for example, into an optic vesicle, somites, cranial mesoderm and limb mesenchyme. Because of the locality of gene introduction and its expression, survival rates of the embryos were high: approximately 90% of the embryos injected in optic vesicles were alive for at least 1 day after microelectroporation. The instantaneous gene transfer into embryonic cells allowed rapid expression of protein products such as green fluorescence protein within 2.5 h with fluorescence maintained for 3 days of incubation. This improved technique provides a convenient and efficient way to express transgenes in a spatially and temporally restricted manner in chicken embryos.  相似文献   

10.
The visceral muscles of the Drosophila midgut consist of syncytia and arise by fusion of founder and fusion-competent myoblasts, as described for the somatic muscles. A single-step fusion results in the formation of binucleate circular midgut muscles, whereas a multiple-step fusion process produces the longitudinal muscles. A prerequisite for muscle fusion is the establishment of myoblast diversity in the mesoderm prior to the fusion process itself. We provide evidence for a role of Notch signalling during establishment of the different cell types in the visceral mesoderm, demonstrating that the basic mechanism underlying the segregation of somatic muscle founder cells is also conserved during visceral founder cell determination. Searching for genes involved in the determination and differentiation of the different visceral cell types, we identified two independent mutations causing loss of visceral midgut muscles. In both of these mutants visceral muscle founder cells are missing and the visceral mesoderm consists of fusion-competent myoblasts only. Thus, no fusion occurs resulting in a complete disruption of visceral myogenesis. Subsequent characterisation of the mutations revealed that they are novel alleles of jelly belly (jeb) and the Drosophila Alk homologue named milliways (mili(Alk)). We show that the process of founder cell determination in the visceral mesoderm depends on Jeb signalling via the Milliways/Alk receptor. Moreover, we demonstrate that in the somatic mesoderm determination of the opposite cell type, the fusion-competent myoblasts, also depends on Jeb and Alk, revealing different roles for Jeb signalling in specifying myoblast diversity. This novel mechanism uncovers a crosstalk between somatic and visceral mesoderm leading not only to the determination of different cell types but also maintains the separation of mesodermal tissues, the somatic and splanchnic mesoderm.  相似文献   

11.
The intermediate mesoderm lies between the somites and the lateral plate and is the source of all kidney tissue in the developing vertebrate embryo. While bone morphogenetic protein (Bmp) signaling is known to regulate mesodermal cell type determination along the medio-lateral axis, its role in intermediate mesoderm formation has not been well characterized. The current study finds that low and high levels of Bmp ligand are both necessary and sufficient to activate intermediate and lateral mesodermal gene expression, respectively, both in vivo and in vitro. Dose-dependent activation of intermediate and lateral mesodermal genes by Bmp signaling is cell-autonomous, as demonstrated by electroporation of the avian embryo with constitutively active Bmp receptors driven by promoters of varying strengths. In explant cultures, Bmp activation of Odd-skipped related 1 (Odd-1), the earliest known gene expressed in the intermediate mesoderm, is blocked by cyclohexamide, indicating that the activation of Odd-1 by Bmp signaling is translation-dependent. The data from this study are integrated with that of other studies to generate a model for the role of Bmp signaling in trunk mesodermal patterning in which low levels of Bmp activate intermediate mesoderm gene expression by inhibition of repressors present in medial mesoderm, whereas high levels of Bmp repress both medial and intermediate mesoderm gene expression and activate lateral plate genes.  相似文献   

12.
A role for the Drosophila neurogenic genes in mesoderm differentiation   总被引:9,自引:0,他引:9  
The neurogenic genes of Drosophila have long been known to regulate cell fate decisions in the developing ectoderm. In this paper we show that these genes also control mesoderm development. Embryonic cells that express the muscle-specific gene nautilus are overproduced in each of seven neurogenic mutants (Notch, Delta, Enhancer of split, big brain, mastermind, neuralized, and almondex), at the apparent expense of neighboring, nonexpressing mesodermal cells. The mesodermal defect does not appear to be a simple consequence of associated neural hypertrophy, suggesting that the neurogenic genes may function similarly and independently in establishing cell fates in both ectoderm and mesoderm. Altered patterns of beta 3-tubulin and myosin heavy chain gene expression in the mutants indicate a role for the neurogenic genes in development of most visceral and somatic muscles. We propose that the signal produced by the neurogenic genes is a general one, effective in both ectoderm and mesoderm.  相似文献   

13.
14.
15.
16.
17.
18.
Wingless (Wg) is a secreted ligand that differentially activates gene expression in target tissues. It belongs to the Wnt family of secreted signaling molecules that regulate cell-to-cell interactions during development. Activation of Wg targets is dependent on the ligand concentration in the extracellular milieu; cellular mechanisms that govern the synthesis, delivery and receipt of Wg are elaborate and complex. We have identified sprinter (srt), which encodes a novel, evolutionarily conserved transmembrane protein required for the transmission of the Wg signal. Mutations in srt cause the accumulation of Wg in cells that express it, and retention of the ligand prevents activation of its target genes in signal-receiving cells. In the absence of Srt activity, levels of Wg targets (including Engrailed in embryos lacking maternal and zygotic srt, and Senseless and Achaete in wing discs) are reduced. Activation of Wg targets in the receiving cells does not require srt. Hence, the function of Srt is restricted to events occurring within the Wg-producing cells. We show that srt is not required for any aspect of Hedgehog (Hh) signal transduction, suggesting specificity of srt for the Wg pathway. We propose that srt encodes a protein required for Wg secretion that regulates maturation, membrane targeting or delivery of Wg. Loss of srt function in turn diminishes Wg-pathway activation in receiving cells.  相似文献   

19.
During animal development, Wnt/Wingless (Wg) signaling is required for the patterning of multiple tissues. While insufficient signal transduction is detrimental to normal development, ectopic activation of the pathway can be just as devastating. Thus, numerous controls exist to precisely regulate Wg signaling levels. Endocytic trafficking of pathway components has recently been proposed as one such control mechanism. Here, we characterize the vesicular trafficking of Wg and its receptors, Arrow and DFrizzled-2 (DFz2), and investigate whether trafficking is important to regulate Wg signaling during dorsoventral patterning of the larval wing. We demonstrate a role for Arrow and DFz2 in Wg internalization. Subsequently, Wg, Arrow and DFz2 are trafficked through the endocytic pathway to the lysosome, where they are degraded in a hepatocyte growth factor-regulated tyrosine kinase substrate (Hrs)-dependent manner. Surprisingly, we find that Wg signaling is not attenuated by lysosomal targeting in the wing disc. Rather, we suggest that signaling is dampened intracellularly at an earlier trafficking step. This is in contrast to patterning of the embryonic epidermis, where lysosomal targeting is required to restrict the range of Wg signaling. Thus, signal modulation by endocytic routing will depend on the tissue to be patterned and the goals during that patterning event.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号