共查询到20条相似文献,搜索用时 8 毫秒
1.
Metabolic Network Analysis of Streptomyces tenebrarius, a Streptomyces Species with an Active Entner-Doudoroff Pathway 总被引:1,自引:0,他引:1 下载免费PDF全文
Irina Borodina Charlotte Sch?ller Anna Eliasson Jens Nielsen 《Applied microbiology》2005,71(5):2294-2302
Streptomyces tenebrarius is an industrially important microorganism, producing an antibiotic complex that mainly consists of the aminoglycosides apramycin, tobramycin carbamate, and kanamycin B carbamate. When S. tenebrarius is used for industrial tobramycin production, kanamycin B carbamate is an unwanted by-product. The two compounds differ only by one hydroxyl group, which is present in kanamycin carbamate but is reduced during biosynthesis of tobramycin. 13C metabolic flux analysis was used for elucidating connections between the primary carbon metabolism and the composition of the antibiotic complex. Metabolic flux maps were constructed for the cells grown on minimal medium with glucose or with a glucose-glycerol mixture as the carbon source. The addition of glycerol, which is more reduced than glucose, led to a three-times-greater reduction of the kanamycin portion of the antibiotic complex. The labeling indicated an active Entner-Doudoroff (ED) pathway, which was previously considered to be nonfunctional in Streptomyces. The activity of the pentose phosphate (PP) pathway was low (10 to 20% of the glucose uptake rate). The fluxes through Embden-Meyerhof-Parnas (EMP) and ED pathways were almost evenly distributed during the exponential growth on glucose. During the transition from growth phase to production phase, a metabolic shift was observed, characterized by a decreased flux through the ED pathway and increased fluxes through the EMP and PP pathways. Higher specific NADH and NADPH production rates were calculated in the cultivation on glucose-glycerol, which was associated with a lower percentage of nonreduced antibiotic kanamycin B carbamate. 相似文献
2.
3.
Cloning of an aminoglycoside-resistance-encoding gene, kamC, from Saccharopolyspora hirsuta: comparison with kamB from Streptomyces tenebrarius. 总被引:2,自引:0,他引:2
An aminoglycoside-resistance-encoding gene (kamC) has been isolated from the sporaricin producer, Saccharopolyspora (Sac.) hirsuta, and expressed both in Streptomyces lividans and Escherichia coli. The pattern of resistance conferred by this gene was identical to that given by another gene (kamB) previously isolated from Streptomyces tenebrarius. In accordance with the known action of the kamB product, the Sac, hirsuta determinant also encodes a methyltransferase that modifies 16S rRNA, thereby rendering ribosomes refractory to certain aminoglycosides. The nucleotide sequences of both genes have been determined and comparison of the deduced amino acid sequences reveals a high degree of similarity. 相似文献
4.
S.tenebrarius H6主要产生安普霉素、氨甲酰妥布霉素和氨甲酰卡那霉素B,其中后两者仅在3′位有差异。为克隆相关基因,根据已报道的aprD3、livY、gentY基因设计兼并性PCR引物,并采用SON-PCR(singleoligonucleotide nested PCR)方法和LASP-PCR(linear amplification single primer PCR)方法,扩增获得部分SCD1基因,Blast分析为短链脱氢酶基因。采用基因阻断技术,使S.tenebrariusH6中SCD1基因失活。与野生菌株相比,变株的抗生素组分和含量几乎没有变化,但变株产孢子能力下降,且产孢子时间推迟,推测该基因与孢子的生成调节相关。 相似文献
5.
Aims: To engineer Streptomyces tenebrarius for producing carbamoyl tobramycin as a main component. Methods and Results: The aprH‐M gene fragment (apramycin biosynthetic gene from GenBank) in S. tenebrarius Tt49 was knocked out by genetic engineering to form S. tenebrarius T106 (△aprH‐M). Compared to the wild‐type strain, mutant strain T106 (△aprH‐M) no longer produced apramycin, while mainly synthesize carbamoyl tobramycin. TLC and HPLC‐MS analyses indicated that the mutant strain significantly increased the production of carbamoyl tobramycin. Conclusions: The metabolic flow for the apramycin and its analogues biosynthesis was blocked by disrupting the aprH‐M gene clusters. The aprH‐M gene clusters might be essential for the biosynthesis of apramycin. The mutant strain T106 mainly synthesized carbamoyl tobramycin. Significance and Impact of Study: The mutant T106 mainly produces carbamoyl tobramycin without synthesizing apramycin, which will reduce cost of postextraction from fermentation products. Therefore, it has good prospects for industrial application. 相似文献
6.
7.
8.
A linear sensitivity analysis of metabolic regulation in nonsteady states is described. This treatment considers the effects of enzymatic and nonenzymatic reactions and spontaneous rapid equilibria. Sensitivity coefficients summarizing the influence of metabolite concentrations on reaction rates and pathway net flux are defined, as are sensitivity coefficients summarizing the effects of enzymes on metabolite concentrations and net flux. The sensitivity analysis is implemented in an easily used set of computer programs. A four-enzyme test model was shown to be resistant to intuitive interpretation. Sensitivity analysis showed a shift of control from the end of the enzymic sequence to the beginning of the sequence with changing metabolic state. The homeostatic behavior of the test system was shown to depend on the nonenzymatic reactions as well as on the enzymes. Under certain conditions metabolic regulation is shared so intimately among enzymes and spontaneous reactions that separation of their effects is impossible. 相似文献
9.
10.
Genetic engineering as an important approach to strain optimization has received wide recognition. Recent advances in the
studies on the biosynthetic pathways and gene clusters of Streptomyces make stain optimization by genetic alteration possible. Kanamycin B is a key intermediate in the manufacture of the important
medicines dibekacin and arbekacin, which belong to a class of antibiotics known as the aminoglycosides. Kanamycin could be
prepared by carbamoylkanamycin B hydrolysis. However, carbamoylkanamycin B production in Streptomyces tenebrarius H6 is very low. Therefore, we tried to obtain high kanamycin B-producing strains that produced kanamycin B as a main component.
In our work, aprD3 and aprD4 were clarified to be responsible for deoxygenation in apramycin and tobramycin biosynthesis. Based on this information, genes
aprD3, aprQ (deduced apramycin biosynthetic gene), and aprD4 were disrupted to optimize the production of carbamoylkanamycin B. Compared with wild-type strain, mutant strain SPU313 (ΔaprD3, ΔaprQ, and ΔaprD4) produced carbamoylkanamycin B as a single antibiotic, whose production increased approximately fivefold. To construct a
strain producing kanamycin B instead of carbamoylkanamycin B, the carbamoyl-transfer gene tacA was inactivated in strain SPU313. Mutant strain SPU314 (ΔaprD3, ΔaprQ, ΔaprD4, and ΔtacA) specifically produced kanamycin B, which was proven by LC-MS. This work demonstrated careful genetic engineering could significantly
improve production and eliminate undesired products. 相似文献
11.
Cloning of aminoglycoside-resistance determinants from Streptomyces tenebrarius and comparison with related genes from other actinomycetes 总被引:1,自引:0,他引:1
At least two aminoglycoside-resistance determinants from Streptomyces tenebrarius have been cloned separately in Streptomyces lividans. In each case, resistance (to kanamycin plus apramycin or to kanamycin plus gentamicin) was expressed at the level of the ribosome and involved specific methylation of 16S ribosomal RNA. Hybridization and restriction analysis revealed that related genes were present in other aminoglycoside-producing actinomycetes. 相似文献
12.
Isolation and characterization of the tobramycin biosynthetic gene cluster from Streptomyces tenebrarius 总被引:9,自引:0,他引:9
Kharel MK Basnet DB Lee HC Liou K Woo JS Kim BG Sohng JK 《FEMS microbiology letters》2004,230(2):185-190
The biosynthetic gene cluster for tobramycin, a 2-deoxystreptamine-containing aminoglycoside antibiotic, was isolated from Streptomyces tenebrarius ATCC 17920. A genomic library of S. tenebrarius was constructed, and a cosmid, pST51, was isolated by the probes based on the core regions of 2-deoxy-scyllo-inosose (DOI) synthase, and L-glutamine:DOI aminotransferase and L-glutamine:scyllo-inosose aminotransferase. Sequencing of 33.9 kb revealed 24 open reading frames (ORFs) including putative tobramycin biosynthetic genes. We demonstrated that one of these ORFs, tbmA, encodes DOI synthase by in vitro enzyme assay of the purified protein. The catalytic residues of TbmA and dehydroquinate synthase were studied by homology modeling. The gene cluster found is likely to be involved in the biosynthesis of tobramycin. 相似文献
13.
Streptomyces spheroides, Streptomyces rishiriensis, and Streptomyces roseochromogenes are producers of the aminocoumarin-type antibiotics novobiocin, coumermycin A(1), and clorobiocin, respectively, all of which are bacterial gyrase inhibitors. In an attempt to develop a general analytical method for pathway monitoring of secondary metabolites from culture extracts of these strains, we used superior mass spectrometric methods. The aim was to develop and apply a technique for the rapid analysis of Streptomyces culture extracts with respect to those substances, thereby providing a method for screening extracts of genetically modified strains for new pharmaceutically active antibiotics with improved pharmacological effects. The combination of full scan mass spectrometry (MS), parent ion scan MS, product ion scan MS, and in-source collision-induced fragmentation prior to product ion scans (pseudo-MS(3) scan), using characteristic fragmentation of the central aminocoumarin unit, was employed for the detection and structural interpretation of expected and new intermediates. We were able to show the applicability of this methodology to the three culture extracts, where the main intermediates could be found, and to demonstrate its use for interpretation of secondary metabolite biosynthesis. Some new compounds were discovered, including bis-carbamoylated novobiocin, hydroxylated clorobiocin, and several structurally and not yet fully elucidated coumermycin derivatives or precursors. 相似文献
14.
A new Streptomyces species is described for which the name S. maghwi is proposed. The organism is characterized by a pink mass of aerial mycelium, spiral spore chains, spores with smooth surfaces and a nonchromogenic vegetative mycelium. S. maghwi produces roflamycoin (Schlegel et al. 1981) formerly known as flavomycoin (Schlegel et al. 1971). The type strain of S. maghwi is deposited with CBS, Netherland. 相似文献
15.
2-Deoxystreptamine (DOS)-containing aminoglycoside-aminocyclitol (AmAc) antibiotics represent the majority of clinically important AmAcs. Biosynthetic investigations of formation of DOS in actinomycetes are limited to the characterization of 2-deoxy-scyllo-inosose synthase, the first step enzyme of the DOS biosynthetic pathway. A gene encoding L-glutamine:2-deoxy-scyllo-inosose aminotransferase (tbmB) from the tobramycin producer Streptomyces tenebrarius was expressed heterologously in Escherichia coli. The conversions of 2-deoxy-scyllo-inosose to 2-deoxy-scyllo-inosamine and scyllo-inosose to scyllo-inosamine with the activity of TbmB were determined in vitro. The results indicate that tbmB catalyzes the second step of the DOS biosynthetic pathway during the biosynthesis of 2-deoxystreptamine, a subunit of tobramycin, in S. tenebrarius. 相似文献
16.
Gupta S Bisht SS Kukreti R Jain S Brahmachari SK 《Journal of theoretical biology》2007,244(3):463-469
BACKGROUND: A Boolean network is a simple computational model that may provide insight into the overall behavior of genetic networks and is represented by variables with two possible states (on/off), of the individual nodes/genes of the network. In this study, a Boolean network model has been used to simulate a molecular pathway between two neurotransmitter receptor, dopamine and glutamate receptor, systems in order to understand the consequence of using logic gate rules between nodes, which have two possible states (active and inactive). RESULTS: The dynamical properties of this Boolean network model of the biochemical pathway shows that, the pathway is stable and that, deletion/knockout of certain biologically important nodes cause significant perturbation to this network. The analysis clearly shows that in addition to the expected components dopamine and dopamine receptor 2 (DRD2), Ca(2+) ions play a critical role in maintaining stability of the pathway. CONCLUSION: So this method may be useful for the identification of potential genetic targets, whose loss of function in biochemical pathways may be responsible for disease onset. The molecular pathway considered in this study has been implicated with a complex disorder like schizophrenia, which has a complex multifactorial etiology. 相似文献
17.
链霉菌Streptomyces tenebrarius H6中与抗生素有关的糖生物合成基因的克隆 总被引:3,自引:0,他引:3
链霉菌S.tenebrarius H6产生多种氨基糖甙类抗生素,主要有阿普霉素、妥普霉素及卡那霉素B,其中阿普霉素因含有8碳糖的一种特殊结构令人注目,它的抗菌谱广,特别是对革兰氏阴性菌有较强的抗菌活性,不容易产生耐药性,对已有的耐药菌产生的氨基糖苷转移酶等失活酶仍有抵抗力.主要用于牛、猪、鸡等的大肠杆菌、沙门氏菌和支原体所引起的白痢、腹泻和肺炎等疾病.迄今有关八碳糖生物合成基因簇的研究在国内外尚无报道,在该菌株开展有关糖合成代谢基因的研究有着一定的意义. 相似文献
18.
Shigeo Yagi Seiji Kitai Toshiaki Kimura 《Bioscience, biotechnology, and biochemistry》2013,77(2):336-338
Rhodosporidium toruloides is a lipid-producing yeast, the growth of which is severely suppressed when hydrolysates of lignocellulosic biomass are used as carbon source. This is probably due to the toxic substances, such as organic acids, furans, and phenolic compounds produced during the preparation of the hydrolysates. In order to solve this problem, R. toruloides cultures were subjected to atmospheric room-temperature plasma mutagenesis, resulting in the isolation of mutants showing tolerance to sugarcane bagasse hydrolysate (SBH). Three mutant strains, M11, M13, and M18, were found to grow with producing lipids with SBH as carbon source. M11 in particular appeared to accumulate higher levels (up to 60% of dry cell weight) of intracellular lipids. Further, all three mutant strains showed tolerance of vanillin, furfural, and acetic acid, with different spectra, suggesting that different genetic determinants are involved in SBH tolerance. 相似文献
19.
Mutants of Streptomyces tenebrarius with the blocked synthesis of 3'-deoxykanamycin B were obtained by treating the producer with NTG and chloramphenicol, or after gamma-irradiation. These mutants (idiotrophs) were distributed into three groups by means of the cosynthesis experiments on agar plates: convertors, secretors and "neutral" strains. Five idiotrophs represented five complementation groups for biosynthesis of the antibiotic. Three of these were defective in 2-deoxystreptamine synthesis, the fourth was defined as neamine-negative, and the fifth was probably blocked in regulation of enzymes responsible for conversion of neamine or paromamine into kanamycins. Localization of mutations has been shown on the scheme of kanamycins' biosynthesis. 相似文献
20.
Nedra Slama Houda Mankai Ameni Ayed Karim Mezhoud Catherine Rauch Hadeer Lazim Insaf Barkallah Maher Gtari Ferid Limam 《Antonie van Leeuwenhoek》2014,105(2):377-387
A novel actinomycete strain designated CN-207T was isolated from northern Tunisian soil. This strain exhibited potent broad spectrum antibacterial activity against clinical isolates of methicillin-resistant Staphylococcus species and several other Gram-positive and Gram-negative bacteria. Strain CN-207T developed greyish aerial mycelium and pale grey substrate mycelium on yeast extract/malt agar. The isolate produced branching vegetative mycelia with sporangiophores bearing sporangia developing at a late stage of growth. The sporangia contained smooth, non-motile spores. Chemotaxonomic characteristics of strain CN-207T were typical of the Streptomyces genus. Phylogenetic analysis based on 16S rRNA gene sequences indicated that strain CN-207T belonged to the genus Streptomyces, and was most closely related to Streptomyces griseoincarnatus DSM 40274T, Streptomyces variabilis DSM 40179T, Streptomyces labedae DSM 41446T and Streptomyces erythrogriseus DSM 40116T. Low DNA–DNA relatedness values were recorded between strain CN-207T and its closest phylogenetic neighbours. Strain CN-207T was also distinguished from the nearest phylogenetic neighbours using a combination of morphological and phenotypic characteristics. On the basis of its phenotypic and molecular properties, strain CN-207T is considered as a novel species of the Streptomyces genus, for which the name Streptomyces tunisiensis sp. nov. is proposed. The type strain is CN-207T (=JCM 17589T = DSM 42037T). 相似文献