首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 8 毫秒
1.
2.
3.
4.
DNA Bending by AraC: a Negative Mutant   总被引:1,自引:1,他引:0       下载免费PDF全文
  相似文献   

5.
6.
7.
Determining residue-base interactions between AraC protein and araI DNA   总被引:16,自引:0,他引:16  
Depurination/depyrimidation binding-interference experiments (missing contact probing) identified specific candidate residue-base interactions lost by mutants of Escherichia coli L-arabinose operon regulatory protein, AraC, to one of its binding sites, araI. These candidates were then checked more rigorously by comparing the affinities of wild-type and alanine-substituted AraC protein to variants of araI with alterations in the candidate contacted positions. Residues 208 and 212 apparently contact DNA and support, but do not prove the existence of a helix-turn-helix structure in this region of AraC protein whereas contacts by mutants with alterations at positions 256, 257 and 261 which are within another potential helix-turn-helix region do not support the existence of such a structure there. The missing contacts displayed by three AraC mutants are found within two major groove regions of the DNA and are spaced 21 base-pairs apart in a pattern indicating a direct repeat orientation for the subunits of AraC.  相似文献   

8.
We examined the recognition of the araBAD promoter by the AraC protein in the Escherichia coli arabinose operon. A mutant promoter, with base substitutions at positions contacted by AraC, was used to isolate suppressor mutations in araC by direct selection. Two hydroxylamine-induced araC mutations were isolated repeatedly; each contained a single amino acid substitution. When tested against a set of base substitution promoter mutants, one revertant, an Arg to His substitution at residue 250, displayed altered base specificity for a single position within the araBAD promoter. The other revertant, a Cys to Tyr substitution at residue 204, did not show consistent base-specific suppression. Neither demonstrated a higher affinity than the wild type protein for the mutant promoter in vitro. Both proteins suppress mutant sequences by a mechanism that does not appear to involve the formation of new net favorable contacts with the mutant base pairs of the promoter.  相似文献   

9.
We report the solution structure of the DNA binding domain of the Escherichia coli regulatory protein AraC determined in the absence of DNA. The 20 lowest energy structures, determined on the basis of 1507 unambiguous nuclear Overhauser restraints and 180 angle restraints, are well resolved with a pair wise backbone root mean square deviation of 0.7 Å. The protein, free of DNA, is well folded in solution and contains seven helices arranged in two semi‐independent sub domains, each containing one helix‐turn‐helix DNA binding motif, joined by a 19 residue central helix. This solution structure is discussed in the context of extensive biochemical and physiological data on AraC and with respect to the DNA‐bound structures of the MarA and Rob homologs. Proteins 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

10.
11.
The linker region of AraC protein.   总被引:1,自引:1,他引:0       下载免费PDF全文
  相似文献   

12.
13.
14.
Eukaryotic type 1B topoisomerases act by forming covalent enzyme-DNA intermediates that transiently nick DNA and thereby release DNA supercoils. Here we present a study of the topoisomerase encoded by the pathogenic poxvirus molluscum contagiosum. Our studies of DNA sites favored for catalysis reveal a larger recognition site than the 5'-(T/C)CCTT-3' sequence previously identified for poxvirus topoisomerases. Separate assays of initial DNA binding and covalent complex formation revealed that different DNA sequences were important for each reaction step. The location of the protein-DNA contacts was mapped by analyzing mutant sites and inosine-substituted DNAs. Some of the bases flanking the 5'-(T/C)CCTT-3' sequence were selectively important for covalent complex formation but not initial DNA binding. Interactions important for catalysis were probed with 5'-bridging phosphorothiolates at the site of strand cleavage, which permitted covalent complex formation but prevented subsequent religation. Kinetic studies revealed that the flanking sequences that promoted recovery of covalent complexes increased initial cleavage instead of inhibiting resealing of the nicked intermediate. These data 1) indicate that previously unidentified DNA contacts can accelerate a step between initial binding and covalent complex formation and 2) help specify models for conformational changes promoting catalysis.  相似文献   

15.
Intact AraC protein is poorly soluble and difficult to purify, whereas its dimerization domain is the opposite. Unexpectedly, the DNA binding domain of AraC proved also to be soluble in cells when overproduced and is easily purified to homogeneity. The DNA binding affinity of the DNA binding domain for its binding site could not be measured by electrophoretic mobility shift because of its rapid association and dissociation rates, but its affinity could be measured with a fluorescence assay and was found to have a dissociation constant of 1 x 10(-8)M in 100 mM KCl. The binding of monomers of the DNA binding domain to adjacent half-sites occurs without substantial positive or negative cooperativity. A simple analysis relates the DNA binding affinities of monomers of DNA binding domain and normal dimeric AraC protein.  相似文献   

16.
Pox-1, a mutant of Salmonella typhimurium, strongly channels P22 toward lysogeny. Viral DNA synthesis in this slow-growing mutant is delayed to a greater extent than viral protein synthesis. The relative enhancement of c2 repressor synthesis results in much higher repressor/DNA synthesis ratios in Pox-1 than in wild-type cells. This probably accounts for the high frequency of lysogenization.  相似文献   

17.
A somatic cell genetic approach has been used to evaluate the role of cyclic AMP-dependent protein kinase in ACTH action on adrenal steroidogenesis. A mutant clone, 8BrcAMPr-1, previously was isolated from an ACTH-sensitive adrenocortical tumor cell line (clone Y1) following mutagenesis and selective growth in 8-bromoadenosine 3′, 5′-monophosphate. This study demonstrates that the 8BrcAMP4-1 cells have an altered cyclic AMP-dependent protein kinase. The protein kinase in the cytosol of the mutant characteristically requires, for half-maximal activity, concentrations of cyclic AMP 7-fold higher than those required by the enzyme in preparations from the parent. The cytosolic cyclic AMP-dependent protein kinases of Y1 and 8BrcAMPr-1 cells chromatograph similarly on columns of DEAE-cellulose. From each cell line, a major peak of activity (≥ 70% of recovered activity), designated as Peak I, elutes with 0.04–0.06 M NaCl; a second peak of activity, designated as Peak II, elutes with 0.12–0.14 M NaCl. Protein kinase activity in the Peak I fraction of mutant cells has a decreased apparent affinity (4-fold) for cyclic AMP relative to the corresponding fraction of parental Y1 cells. The protein kinase activities present in Peak II fractions from Y1 and mutant cells are indistinguishable. The protein kinase mutant exhibits poor steroidogenic responses to added ACTH and cyclic AMP; and as shown previously does not display the growth arrest and morphological changes produced in Y1 by these agents. These results suggest that cyclic AMP-dependent protein kinase is important in the regulation of adrenal steroidogenesis, morphology and growth by ACTH.  相似文献   

18.
Residues 2, 6, 8 and 10 of Mnt repressor are the major determinants of operator DNA binding and recognition. Here, we investigate the interaction of wild-type Mnt and mutants bearing the Arg2----Lys, His6----Ala, Asn8----Ala and Arg10----Lys mutations with operator DNA modified by methylation or by symmetric base substitutions. The wild-type pattern of methylation interference is altered in specific ways for each of the mutant proteins. In addition, some of the mutant proteins show a 'loss of contact' phenotype with specific mutant operators. Taken together, these and previous results predict the following contacts between side chains in the Mnt tetramer and operator DNA: Arg2 recognizes the guanines at operator positions 10 and 12; His6 contacts the guanines at operator positions 5 and 17; Asn8 contacts operator positions 4, 7, 15 and 18; Arg10 contacts the guanines at operator positions 8 and 14. The proposed contacts can be accommodated in a structural model in which the anti-parallel beta-sheet motifs of Mnt dimers lie in the major grooves of each operator half-site, centered over pseudo-symmetry axes that are 5.5 bp from the central dyad axis of the operator.  相似文献   

19.
Equilibrium DNA-binding of AraC protein. Compensation for displaced ions   总被引:2,自引:0,他引:2  
Experiments on the AraC regulatory protein of Escherichia coli suggest a mechanism that DNA-binding proteins can use to reduce potentially drastic alterations in their affinity for DNA resulting from changes in salt concentration. Measurement of the net number of ions apparently displaced as AraC protein binds DNA and of fluorescence changes in the protein lead to the following picture. About 14 ions are displaced from the DNA as the protein binds the araI site. As the protein binds the DNA, however, it undergoes a conformational change and binds about ten ions. Consequently, the net order of the reaction is reduced from 15th to about fourth order in salt concentration.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号