首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A novel endonuclease from adult hen liver nuclei has been purified to a homogeneous state through salt extraction, ammonium sulfate fractionation, gel filtration, acetone fractionation, and successive chromatography of 1) hydroxyapatite and DNA Sepharose and 2) hydroxyapatite and isoelectric focusing. The endonuclease has a pH optimum at 9.0 and requires Mg2+ for activity. The enzyme hydrolyzes more rapidly in the order of polynucleotide: denatured DNA = rRNA greater than poly(dA) = poly(dT) greater than poly(dC) = poly(dG) greater than native DNA. This endonuclease degrades denatured DNA about 20 times more rapidly than does the native DNA. The products contain 5'-phosphoryl and 3'-hydroxyl termini and all four deoxynucleotides are present while dGMP is predominant. The enzyme cleaves the circular duplex PM2 DNA, endonucleotically, via single strand scission. The isoelectric point is 10.2 +/- 0.2 and the molecular weight is 43,000 +/- 2,000, determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and gel filtration. Pyridoxal 5'-phosphate and 2,3-butanedione inhibit the catalytic activity, respectively. The inhibition of DNA binding activity was also seen with former, but not with the latter. Purified Mg2+-dependent alkaline endonuclease was used to investigate the nature of poly(ADP-ribose) inhibition of the enzyme. In contrast to the Ca2+/Mg2+-dependent endonuclease (Yoshihara, K., Tanigawa, Y., Burzio, L., and Koide, S. S. (1975) Proc. Natl. Acad. Sci. U. S. A. 72, 289-293), ADP-ribosylation of the endonuclease protein was not observed. When 100 ng of the poly(ADP-ribose) having four to five ADP-ribose units per molecule were added to the nuclease assay system (total volume of 0.2 ml) 14% inhibition was observed, and increase in the chain length increased the inhibition. When 100 ng of poly(ADP-ribose) consisting of 20 or more units of the ADP-ribose per mol were added, the inhibition was over 95%. The possible role of the poly(ADP-ribose)-sensitive endonuclease is discussed.  相似文献   

2.
Apoptosis is characterized by various cell morphological and biochemical features, one of which is the internucleosomal degradation of genomic DNA. The role of the human chromatin-bound Ca(2+)- and Mg(2+)-dependent endonuclease (CME) DNAS1L3 and its inhibition by poly(ADP-ribosyl)ation in the DNA degradation that accompanies apoptosis was investigated. The nuclear localization of this endonuclease is the unique feature that distinguishes it from other suggested apoptotic nucleases. Purified recombinant DNAS1L3 was shown to cleave nuclear DNA into both high molecular weight and oligonucleosomal fragments in vitro. Furthermore, exposure of mouse skin fibroblasts expressing DNAS1L3 to inducers of apoptosis resulted in oligonucleosomal DNA fragmentation, an effect not observed in cells not expressing this CME, as well as in a decrease in cell viability greater than that apparent in the control cells. Recombinant DNAS1L3 was modified by recombinant human poly(ADP-ribose) polymerase (PARP) in vitro, resulting in a loss of nuclease activity. The DNAS1L3 protein also underwent poly(ADP-ribosyl)ation in transfected mouse skin fibroblasts in response to inducers of apoptosis. The cleavage and inactivation of PARP by a caspase-3-like enzyme late in apoptosis were associated with a decrease in the extent of DNAS1L3 poly(ADP-ribosyl)ation, which likely releases DNAS1L3 from inhibition and allows it to catalyze the degradation of genomic DNA.  相似文献   

3.
4.
The major nuclease from Mycoplasma penetrans has been purified to homogeneity. The enzyme seems to be present as a membrane-associated precursor of 50 kDa and as a peripheral membrane monomeric polypeptide of 40 kDa that is easily removed by washing of cells with isotonic buffers and in the aqueous phase upon Triton partitioning of Triton X-114-solubilized protein. The 40-kDa nuclease was extracted from M. penetrans cells by Triton X-114 and phase fractionation and was further purified by chromatography on Superdex 75 and chelating Sepharose (Zn2+ form) columns. By gel filtration, the apparent molecular mass was 40 kDa. The purified enzyme exhibits both a nicking activity on superhelical and linear double-stranded DNA and a nuclease activity on RNA and single-stranded DNA. No exonuclease activity was found for this enzyme. This nuclease required both Mg2+ (optimum, 5 mM) and Ca2+ (optimum, 2 mM) for activity and exhibited a pH optimum between pH 7 and 8 for DNase activity. It was inhibited by Zn2+, Mn2+, heparin, sodium dodecyl sulfate, and chelator agents such EDTA and EGTA, but no effect was observed with ATP, 2-mercaptoethanol, N-ethylmaleimide, dithiothreitol, nonionic detergents, phenylmethylsulfonyl fluoride, and iodoacetamide. Nuclease activity was inhibited by diethylpyrocarbonate at both pH 6 and 8 and by pepstatin, suggesting the involvement of a histidine and an aspartate in the active site. When added to human lymphoblast nuclei, the purified M. penetrans endonuclease induced internucleosomal fragmentation of the chomatin into oligonucleosomal fragments. On the basis of this result, and taking into account the fact that M. penetrans has the capacity to invade eucaryotic cells, one can suggest, but not assert, that produced Ca2+/Mg2+-dependent endonuclease may alter the nucleic acid metabolism of host cells by DNA and/or RNA degradation and may act as a potential pathogenic determinant.  相似文献   

5.
6.
7.
The enzyme, poly(ADP-ribose) polymerase (PARP), effects repair of DNA after ischemia-reperfusion (I/R) injury to cells in nerve and muscle tissue. However, its activation in severely damaged cells can lead to ATP depletion and death. We show that PARP expression is enhanced in damaged renal proximal tubules beginning at 6-12 h after I/R injury. Intraperitoneal administration of PARP inhibitors, benzamide or 3-amino benzamide, after I/R injury accelerates the recovery of normal renal function, as assessed by monitoring the levels of plasma creatinine and blood urea nitrogen during 6 days postischemia. PARP inhibition leads to increased cell proliferation at 1 day postinjury as assessed by proliferating cell nuclear antigen and improves the histopathological appearance of kidneys examined at 7 days postinjury. Furthermore, inhibition of PARP increases levels of ATP measured at 24 h postischemia compared with those in vehicle-treated animals. Our data indicate that PARP activation is a part of the cascade of molecular events that occurs after I/R injury in the kidney. Although caution is advised, transient inhibition of PARP postischemia may constitute a novel therapy for acute renal failure.  相似文献   

8.
Adenyl-32P-Labeled 3'-deoxy-NAD+ was utilized as a substrate by pure DNA-dependent poly(ADP-ribose)polymerase (EC 2.4.2.30) from calf thymus in the automodification reaction with an apparent Km of 20 microM and a Vmax of 80 nmol/min/mg of protein. Analysis by lithium lauryl sulfate-polyacrylamide gel electrophoresis revealed a single 32P-labeled protein of 116-kDa which comigrated with automodified enzyme. Addition of increasing amounts of histone H1 up to a concentration of 15 micrograms/ml stimulated the synthesis of protein-bound polymers of 3'-deoxy-ADP-ribose. However, the average polymer size was equal to 2 in the presence and 4 in the absence of histone H1, respectively. The synthesis of protein-bound oligomers of 3'-deoxy-ADP-ribose was inhibited by the polymerase inhibitors benzamide, nicotinamide, thymidine, and NaCl. A pulse labeling of polymer synthesis with 40 microM [32P]3'-deoxy-NAD+ either in the presence or absence of 15 micrograms/ml of histone H1, followed by a chase with 1 mM [3H]NAD+, was used to determine the mechanism of poly(ADP-ribose) elongation. Following enzyme digestion of these polymers with phosphodiesterase, it was found that 52 and 24% of the total 32P radiolabel was associated with the 3'-deoxy-AMP termini of the polymers synthesized in the pulse reactions, in the presence or absence of histone H1, respectively. In contrast, less than 10% of the total radioactivity was associated with 3'-deoxy-AMP in the product of the chase reactions. These results are consistent with the conclusion that the initially attached residue of 3'-deoxy-ADP-ribose to either the polymerase or histone H1, is elongated by the "protein-distal" addition of ADP-ribose residues to the AMP terminus of the growing polymer chain.  相似文献   

9.
Sarcolemma (SL) vesicles, isolated from pig heart, contain both a Ca2+-calmodulin-dependent protein kinase (CaM-PK) and a Ca2+-dependent Mg2+-ATPase (Ca2+/Mg2+)-ATPase). Some of their properties have been compared: their affinity for Ca2+ ions, dependence on exogenous calmodulin (CaM) and sensitivity to the anti-CaM drug calmidazolium (R24571). The properties of Ca2+-CaM-dependent brain phosphodiesterase (PDE) have also been examined. R24571 appeared to be the most potent inhibitor from brain PDE. For the three enzymes studied, exogenously added CaM was able to antagonize the R24571 inhibition, although the efficiency to counteract was rather low in the case of the SL Ca2+/Mg2+-ATPase. R24571 decreased the affinity of the Ca2+/Mg2+-ATPase for Ca2+ ions (KCa 0.35 versus 0.75 microM) and exerted an inhibition non-competitive with Ca2+ ions on the other CaM-dependent enzymes. Membrane-bound CaM, which is involved in controlling the Ca2+/Mg2+-ATPase, appeared to be present in a stoichiometry varying from 1:1 to 1:4 compared to the 32P-intermediate of the ATPase. R24571 treatment of SL vesicles selectively solubilized a number of proteins in the molecular range of 13-20 kD, which may include CaM. The results suggest that different mechanisms are involved in the CaM control of the two SL enzymes studied.  相似文献   

10.
The endogenous Ca2+, Mg2+-dependent endonuclease activity in nuclei from livers of rats receiving daily injections of the synthetic glucocorticoid dexamethasone was examined with respect to the production of both single and double strand breaks in chromatin DNA. The ability to form single strand breaks was measured by means of a nick translation assay and double strand breaks by following the appearance of nucleosomal ladders. A fall in the activity causing double strand breaks to approximately 50 per cent of the control value was apparent at 12 h after the first injection of the steroid. A fall of 25–30 per cent was also observed in the nicking activity but this was not apparent until 24 h after the first steriod injection. Both endonuclease activities remained at these lower levels for the remainder of the period of treatment. Nuclear extracts from dexamethasone-treated rats also showed a reduced ability to produced nucleosomal ladders when incubated with rat muscle nuclei, indicating that the inhibition observed in intact nuclei from treated animals was independent of any changes in chromatin structure. On the other hand the nick translation activity of the two extracts was the same when calf thymus DNA was used as the substrate suggesting that steriod-induced alterations in chromatin structure may be a critical factor in the reduced level of this activity observed in intact nuclei.  相似文献   

11.
12.
Nitroxyl (NO/HNO), has been proposed to be one of the NO-derived cytotoxic species. Although the biological effect of nitroxyl is largely unknown, it has been reported to cause DNA breakage and cytotoxicity. We have therefore investigated whether NO/HNO-induced DNA single-strand breakage activates the nuclear nick sensor enzyme poly(ADP-ribose) polymerase (PARP) and whether PARP activation affects the mode of NO/HNO- induced cell death. NO/HNO generated from Angeli’s salt (AS, sodium trioxodinitrate) (0–300 μM) induced DNA single-strand breakage, PARP activation, and a concentration-dependent cytotoxicity in murine thymocytes. AS-induced cell death was also accompanied by decreased mitochondrial membrane potential and increased secondary superoxide production. The cytotoxicity of AS, as measured by propidium iodide uptake, was abolished by electron acceptors potassium ferricyanide, TEMPOL, the intracellular calcium chelator BAPTA-AM, and by PARP inhibitors 3-aminobenzamide (3-AB) and PJ-34. The cytoprotective effect of 3-AB was paralleled by increased output of AS-induced apoptotic parameters such as phosphatidylserine exposure, caspase activation, and DNA fragmentation. No significant increase in tyrosine nitration could be observed in AS-treated thymocytes as opposed to peroxynitrite-treated cells, indicating that tyrosine nitration is not likely to contribute to NO/HNO-induced cytotoxicity. Our results demonstrate that NO/HNO-induced PARP activation shifts the default apoptotic cell death toward necrosis in thymocytes. However, as total PARP inhibition resulted only in 30% cytoprotection, PARP-independent mechanisms dominate NO/HNO-induced cytotoxicity in thymocytes.  相似文献   

13.
We have measured ΔA transient absorption spectra in the Soret region and kinetics of photodissociation of oxymyoglobin (MbO2) solutions following excitation by pulses of duration 350 fsec and 10 μJ energy at 307 nm. We observed an instantaneous bleaching of the absorbance at 414 nm and the appearance of a broad, red-shifted absorption band in the 438–470 nm region with a time constant of 250 fsec indicative of the formation of a short-lived deliganded Mb species which relaxes to the stable Mb with a constant of 3.5 psec. Following this early relaxation, changes in absorption kinetics indicate also a geminate recombination process of constant τ = 100 psec. These data demonstrate that the well established low quantum yield (φ = 0.03) of photodissociation in MbO2 is related both to the relaxation of an excited Mb state and to a fast geminate recombination process.  相似文献   

14.
K+-dependent Na+/Ca2+ exchanger proteins (NCKX1-5) of the SLC24 gene family play important roles in a wide range of biological processes including but not limited to rod and cone photoreceptor vision, olfaction, enamel formation and skin pigmentation. NCKX proteins are also widely expressed throughout the brain and NCKX2 and NCKX4 knockouts in mice have specific phenotypes. Here we review our work on structure-function relationships of NCKX proteins. We discuss membrane topology, domains critical to transport function, and residues critical to cation binding and transport function, all in the context of crystal structures that were obtained for the archaeal Na+/Ca2+ exchanger NCX_Mj.  相似文献   

15.
Crohn's disease is a chronic disease characterized by oxidant-induced tissue injury and increased intestinal permeability. A consequence of oxidative damage is the accumulation of DNA strand breaks and activation of poly(ADP-ribose) polymerase (PARP), which subsequently catalyzes ADP-ribosylation of target proteins. In this study, we assessed the role of PARP in the colitis seen in interleukin (IL)-10 gene-deficient mice. IL-10 gene-deficient mice demonstrated significant alterations in colonic cellular energy status in conjunction with increased permeability, proinflammatory cytokine release, and nitrosative stress. After 14 days of treatment with the PARP inhibitor 3-aminobenzamide, IL-10 gene-deficient mice demonstrated normalized colonic permeability; reduced tumor necrosis factor-alpha and interferon-gamma secretion, inducible nitric oxide synthase expression, and nitrotyrosine levels; and significantly attenuated inflammation. Time course studies demonstrated that 3-aminobenzamide rapidly altered cellular metabolic activity and decreased cellular lactate levels. This was associated with normalization of colonic permeability and followed by a downregulation of proinflammatory cytokine release. Our data demonstrate that inhibition of PARP activity results in a marked improvement of colonic inflammatory disease and a normalization of cellular metabolic function and intestinal permeability.  相似文献   

16.
A high affinity Ca2+/Mg2+ ATPase has been identified and localized in synaptic membrane subfractions. This enzyme is stimulated by low concentrations of Ca2+ (1 M) believed to approximate the range of Ca2+ in the synaptosomal cytosol (0.1 to 5.0 M). The opiate agonist levorphanol, in a concentration-dependent fashion, inhibited Ca2+-stimulated ATP hydrolysis in lysed synaptic membranes. This inhibition was reversed by naloxone, while dextrorphan, the inactive opiate isomer, was without effect. Inhibition by levorphanol was most pronounced in a subfraction of synaptic membranes (SPM-1). The inhibition of Ca2+-stimulated ATP hydrolysis was characterized by a reduction inV max for Ca2+. Levorphanol pretreatment reduced the Hill coefficient (HN) of 1.5 to 0.7, suggesting cooperative interaction between the opiate receptor and the enzyme protein. Levorphanol, but not dextrorphan, also inhibited (28%) ATP-dependent Ca2+ uptake by synaptic membranes. Opiate ligand stereoisomers were tested for their effects on calmodulin stimulating of high affinity Ca2+/Mg2+ ATPase in synaptic membranes. Levorphanol (10 M), but not the inactive stereoisomer (+)dextrorphan, significantly inhibited (35%) the calmodulin-activated Ca2+-dependent ATP hydrolysis activity in a preparation of lysed synaptic membranes. Both Ca2+-dependent and calmodulin-dependent stimulation of the enzyme in the presence of optimal concentrations of the other co-substrate were inhibited by levorphanol (35–40%) but not dextrorphan. Inhibition of ATP hydrolysis was characterized by a reduction inV max for both Ca2+ and calmodulin stimulation of the enzyme. Calmodulin stimulation of enzyme activity was most pronounced in SPM-1, the membrane fraction which also exhibits the maximal opiate inhibition (40%) of the Ca2+-ATPase. The results demonstrate that opiate receptor activation inhibits a high affinity Ca2+/Mg2+ ATPase in synaptic plasma membranes in a stereospecific fashion. The inhibition of the enzyme may occur by a mechanism involving both Ca2+ and calmodulin. Inhibition of calmodulin activation may contribute to the mechanism by which opiate ligands disrupt synaptosomal Ca2+ buffering mechanisms. Changes in the cytosolic distribution of synaptosomal Ca2+ following inhibition of Ca2+/Mg2+ ATPase may underlie some of the pharmacological effects of opiate drugs.  相似文献   

17.
We examined the fragmentation of DNA treated with N-methyl-N-nitrosourea under conditions in which Ca2+, Mg2+-dependent endonuclease is active. The molecular mass of DNA found in mouse liver slices treated with methylnitrosurea in the presence of Ca2+ plus Mg2+ was 4 X 10(5) Da. Similar results were obtained with a reconstituted system containing partially purified Ca2+, Mg2+-dependent endonuclease and methylnitrosurea-treated DNA. The enzyme extensively cleaved methylnitrosurea-treated DNA, compared with non-treated DNA. The methylnitrosurea-treated nuclear proteins obtained from mouse liver nuclei had no effect on the DNA fragmentation by the enzyme. Using closed-circular DNA treated with methylnitrosurea, the enzyme produced single-strand cuts in the DNA, as was seen in non-treated, closed-circular DNA, however, the rate of hydrolysis was increased. Ca2+, Mg2+-dependent endonuclease thus warrants further investigation, with regard to the precise mechanism of extensive degradation of DNA in cells treated with carcinogenic alkylating agents.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号