首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Glucocorticoids initiate a cytolytic process in lymphoid cells that is characteristic of programmed cell death. In vivo treatment of adrenalectomized rats with glucocorticoids results in the rapid degradation of the thymocyte genome at internucleosomal sites. This DNA degradation occurs prior to cell death, and considerable evidence indicates that this nucleolytic event is central to the initiation of lymphocytolysis. To further characterize this process, we have searched for the gene products in thymocytes which may be responsible for steroid-induced DNA degradation. Adrenalectomized rats were treated in vivo with dexamethasone or a vehicle control; nuclear thymocyte proteins were extracted with 0.6 M NaCl and analyzed for protein content or nuclease activity on sodium dodecyl sulfatepolyacrylamide gels containing calf thymus DNA. Glucocorticoid treatment resulted in the induction of two major protein families, a 30-32-kDa protein doublet and a series of 3-4 proteins of 12-19 kDa, both of which express prominent DNase activity. Induction of the lower molecular weight nucleases increased with time after steroid treatment and paralleled the time course of glucocorticoid-mediated DNA degradation. Nuclease induction was blocked by the glucocorticoid antagonist RU 486, indicating a steroid receptor-mediated process. When nuclei from glucocorticoid-resistant cells were incubated with nuclear extracts from glucocorticoid-treated rats, the DNA was cleaved at internucleosomal sites, whereas extracts from vehicle-treated animals were virtually inactive. Based on these findings we propose that glucocorticoids, acting via a receptor-mediated pathway, induce a nucleolytic "lysis gene" product(s) responsible for lymphocytolysis.  相似文献   

2.
Apoptosis is a physiological process by which selected cells are deleted from a population in response to specific regulatory signals. A hallmark of apoptosis is the internucleosomal degradation of DNA prior to cell death. We are studying glucocorticoid-induced lymphocytolysis as a model system for apoptosis within the immune system. In rat thymocytes, the internucleosomal DNA cleavage which occurs following glucocorticoid treatment is both time- and dose-dependent, and is blocked by the glucocorticoid antagonist RU 486, indicating that this effect is mediated by the glucocorticoid receptor. Similar experiments using glucocorticoid-responsive (wt) and glucocorticoid-resistant (nt) S49.1 lymphoma cell lines confirm that internucleosomal DNA degradation and cell death are glucocorticoid receptor-mediated events and thus reflect the direct effects of glucocorticoids on lymphocytes. In an effort to identify the nuclease(s) responsible for the DNA degradation, we have developed two assays to detect nucleases whose activity is altered by glucocorticoid treatment. The first assay involves electrophoresing extracts of nuclear protein from control and glucocorticoid-treated lymphoid cells into SDS-polyacrylamide gels containing [32P]DNA within the gel matrix. This assay is used to estimate the molecular mass of the nuclease, based on the observed in situ nuclease activity. The second assay uses HeLa nuclei as a substrate to detect internucleosomal cleavage activity present in nuclear extracts of control and glucocorticoid-treated lymphoid cells. Using these assays we have identified a novel Ca2+, Mg2+-dependent nuclease with an apparent molecular weight of 18 kDa in both S49 wt cells and rat thymocytes treated with glucocorticoids. Furthermore, nuclear extracts of glucocorticoid-treated, but not control, rat thymocytes and S49 wt cells were capable of cleaving HeLa chromatin at internucleosomal sites. In an effort to determine the identity of the nuclease capable of internucleosomal cleavage of DNA, nuclear extracts from dex-treated rat thymocytes were fractionated by gel filtration chromatography under non-denaturing conditions, and the fractions were analyzed using the [32P]DNA SDS-PAGE and HeLa nuclei assays. When analyzed under native conditions, the 18 kDa nuclease described previously appears to exist as a 25 kDa protein which may be part of a high molecular weight complex. Interestingly, only the 25 kDa form of the protein was associated with internucleosomal DNA cleavage activity where as the high molecular weight form of the enzyme was devoid of this activity.  相似文献   

3.
本文采用荧光标记CD25单抗和放射性配基结合分析实验,观察了RU486地地塞公抑制淋巴细胞表达高、低亲和力IL-2受本的影响。结果显示,与地塞米松共同培养48小时的大脾淋细胞,高、低亲和力IL-2受体的表达明显降低;在含有地塞米松的淋巴细胞培养体系中加入RU486后,表达CD25(低亲和力IL-2受体)的阳性细胞率显著升高,淋巴细胞表面的高亲和力IL-2受体数量明显增加,基本恢复至正常水平,以上结  相似文献   

4.
Glucocorticoid-induced lymphocyte cell death is a programmed process which is thought to involve the calcium-dependent degradation of DNA into multiples of 180 basepairs, characteristic of internucleosomal degradation. We have used the glucocorticoid-sensitive mouse lymphoma cell line S49.1 [wild-type (wt)] and the glucocorticoid-resistant cell line S49.22r (nt-) to evaluate the role of both glucocorticoid receptors and calcium in the regulation of internucleosomal DNA degradation and expression of calcium-dependent deoxyribonuclease activity. DNA was isolated from untreated (control) and dexamethasone (dex)-treated viable cells and analyzed for internucleosomal DNA degradation by agarose gel electrophoresis, followed by ethidium bromide staining. Glucocorticoid treatment resulted in substantial internucleosomal DNA degradation in wt cells, but not in nt- cells. This effect was inhibited by coincubation of cells with dex and the glucocorticoid receptor antagonist RU486. In contrast to the glucocorticoid response, administration of either of two calcium ionophores, ionomycin or A23187, produced internucleosomal degradation of DNA in both wt and nt- cells, although the latter were less sensitive to ionophore treatment. Interestingly, A23187 treatment also resulted in a loss of cell viability in HeLa S3 cells, a cell line that does not exhibit glucocorticoid-induced apoptosis. No internucleosomal DNA degradation was detected in HeLa S3 cells killed by A23187. To determine whether similar nucleases are associated with this internucleosomal DNA degradation resulting from both glucocorticoid and calcium ionophore treatment, 0.3 M NaCl nuclear protein extracts were prepared from control and treated cells and analyzed for protein composition or nuclease activity. To assay for nuclease activity, nuclear extracts were electrophoresed in sodium dodecyl sulfate-polyacrylamide gels impregnated with [32P]DNA. Nuclease activity was detected by removal of sodium dodecyl sulfate from the gel, activation with calcium, and subsequent visualization of the loss of [32P]DNA by autoradiography. Dex treatment of wt cells resulted in the appearance of several proteins within the mol wt range of 12-18 kDa, only one of which (16-18 kDa) exhibited calcium-dependent nuclease activity. The appearance of these proteins in nuclear extracts was inhibited by coincubation of glucocorticoid-treated cells with RU 486. Glucocorticoid treatment did not result in the appearance of nuclease activity in nuclear extracts from nt- cells. Interestingly, A23187 or ionomycin treatment resulted in an increase in activity of the 16- to 18-kDa nuclease in both wt and nt- cells. These findings indicate that both glucocorticoid receptors and calcium may share common features in the regulation of apoptosis in lymphoid cells.  相似文献   

5.
The mechanism of glucocorticoid-induced internucleosomal DNA cleavage and cytolysis of lymphatic cells is not known. Recent data (Compton, M.M., and Cidlowski, J.A. (1987) J. Biol. Chem. 262, 8288-8292) suggested that in vivo treatment of rat thymocytes with glucocorticoids induces a nucleolytic "lysis gene" product(s) responsible for lymphocytolysis. In this paper, the possibility that lymphocytolysis may result from glucocorticoid-induced nuclease(s) was examined. Using the rat thymocytes as a model system, we have shown by electrophoretic, enzymatic, and amino acid sequence analysis that the putative glucocorticoid-induced nucleases identified recently by Compton and Cidlowski are in fact H1, H1(0), and core histones, and their gross appearance is not the result of new histone protein synthesis, but a result of the release of histone-containing nucleosomes during chromatin breakdown. Evidence presented here shows that the putative induced nuclease activity is an artifact of the assay system employed. Because our data do not support induction of a glucocorticoid-induced nuclease(s), we examined the possibility that DNA cleavage might be induced by activation of a constitutive endogenous endonuclease. We have shown that it is possible to produce characteristic internucleosomal DNA cleavage of rat thymocytes, merely by incubating intact nuclei from untreated adrenalectomized rat thymocytes with Ca2+ and Mg2+ for a short period of time. However, in glucocorticoid-sensitive human CEM-C7 lymphocytes activation of internucleosomal DNA cleavage was independent of calcium uptake. We conclude that glucocorticoid induction of internucleosomal DNA fragmentation does not necessarily require expression of a new nuclease(s), but is the result of the activation of a constitutive endogenous endonuclease(s). Also, our data suggest that the mechanism which controls activation of internucleosomal DNA cleavage in rat thymocytes differs from that which operates in CEM-C7 lymphocytes.  相似文献   

6.
Glucocorticoids stimulate the intestinal absorption of Na+ and water partly by regulation of the Na+/H+ exchanger 3 (NHE3). Previous studies have shown both genomic and nongenomic regulation of NHE3 by glucocorticoids. Serum and glucocorticoid-inducible kinase 1 (SGK1) has been shown to be part of this cascade, where phosphorylation of NHE3 by SGK1 initiates the translocation of NHE3 to the cell surface. In the present work, we examined a series of changes in SGK1 and NHE3 induced by glucocorticoids using human colonic Caco-2 and opossum kidney cells. We found that dexamethasone rapidly stimulated SGK1 mRNAs, but a significant change in protein abundance was not detected. Instead, there was an increase in SGK1 kinase activity as early as at 2 h. An increase in NHE3 protein abundance was not detected until 12 h of dexamethasone exposure, although the transport activity was significantly stimulated at 4 h. These data demonstrate that the changes of SGK1 precede those of NHE3. Chronic regulation (24 h) of NHE3 was blocked completely by prevention of protein synthesis with cycloheximide or actinomycin D and by the glucocorticoid receptor blocker RU486. The acute effect of dexamethasone was similarly abrogated by RU486, but was insensitive to cycloheximide and actinomycin D. Similarly, the stimulation of SGK1 activity by dexamethasone was blocked by RU486 but not by actinomycin D. Together, these data show that the acute effect of glucocorticoids on NHE3 is mediated by a glucocorticoid receptor dependent mechanism that activates SGK1 in a nongenomic manner. Na+/H+ exchanger 3; serum and glucocorticoid-inducible kinase 1  相似文献   

7.
Previous data have suggested that glucocorticoids (GCs) are involved in the differentiation of thymocytes into mature T cells. In this report we demonstrate that the mouse thymic epithelial cells (TEC) express the cytochrome P450 hydroxylases Cyp11A1, Cyp21, and Cyp11B1. These enzymes, in combination with 3beta-hydroxysteroid dehydrogenase (3betaHSD), convert cholesterol into corticosterone, the major GC in rodents. In addition, when TEC were cocultured with 'reporter cells' containing the glucocorticoid receptor (GR) and a GR-dependent reporter gene, a specific induction of reporter gene activity was observed. Induction of reporter gene activity was blocked when the TEC and reporter cells were incubated in the presence of the Cyp11B1 inhibitor metyrapone or the 3betaHSD inhibitor trilostane, as well as by the GR antagonist RU486. Coculturing of TEC with thymocytes induced apoptosis in the latter, which was partially blocked by the enzyme inhibitors and RU486. We conclude that TEC secrete a GC hormone activity and suggest a paracrine role for this in thymocyte development.  相似文献   

8.
Cataract formation can be induced by glucocorticoid treatment of developing chick embryos. We show here that this response can be blocked very effectively by use of the antiglucocorticoid RU486. When dexamethasone (0.02 micromol/egg) was administered from day 13 to 16 chick embryos, their lenses (over 80%) became cataract (GC-induced cataract; stage IV-V) within 48 hrs. These GC-induced cataract formations were prevented by administration of RU486 (0.2 micromol/egg) on day 9. However, RU486 also inhibited hatching even though the embryos showed normal growth and appearance. In control embryos, more than 90% live chicks (39/42 chicks) were hatched on day 22. Chick embryos treated with RU486 on day 9 appeared to grow normally until 21, but could not hatch. When chick embryos were treated with RU486 (0.2 micromol/egg) on day 15, more than 80% live embryos (34/42 chicks) were hatched on day 23 with normal appearance, which was one day delay comparing to the control. These observations indicate that endogenous glucocorticoids are involved in the ability to hatch and that RU486 is able to block the actions of endogenous glucocorticoids. Thus, RU486 should be a very useful tool for studies on other biochemical and physiological aspects of chick embryo development that are under glucocorticoid control.  相似文献   

9.
When animals are under stress, glucocorticoids commonly inhibit adult neurogenesis by acting through glucocorticoid receptors (GRs). However, in some cases, conditions that elevate glucocorticoids promote adult neurogenesis, and the role of glucocorticoid receptors in these circumstances is not well understood. We examined the involvement of GRs in social enhancement of brain cell addition and aggressive signaling in electric fish, Apteronotus leptorhynchus. In this species, long-term social interaction simultaneously elevates plasma cortisol, enhances brain cell addition and increases production of aggressive electrocommunication signals (“chirps”). We implanted isolated and paired fish with capsules containing nothing (controls) or the GR antagonist, RU486, recorded chirp production and locomotion for 7 d, and measured the density of newborn cells in the periventricular zone. Compared to isolated controls, paired controls showed elevated chirping in two phases: much higher chirp rates in the first 5 h and moderately higher nocturnal rates thereafter. Treating paired fish with RU486 reduced chirp rates in both phases to those of isolated fish, demonstrating that GR activation is crucial for socially induced chirping. Neither RU486 nor social interaction affected locomotion. RU486 treatment to paired fish had a partial effect on cell addition: paired RU486 fish had less cell addition than paired control fish but more than isolated fish. This suggests that cortisol activation of GRs contributes to social enhancement of cell addition but works in parallel with another GR-independent mechanism. RU486 also reduced cell addition in isolated fish, indicating that GRs participate in the regulation of cell addition even when cortisol levels are low.  相似文献   

10.

Background

Ablation of the low-affinity receptor subunit for leukemia inhibitory factor (LIFR) causes multi-systemic defects in the late gestation fetus. Because corticosterone is known to have a broad range of effects and LIF function has been associated with the hypothalamo-pituitary-adrenal axis, this study was designed to determine the role for LIFR in the fetus when exposed to the elevated maternal glucocorticoid levels of late gestation. Uncovering a requirement for LIFR in appropriate glucocorticoid response will further understanding of control of glucocorticoid function.

Methods

Maternal adrenalectomy or RU486 administration were used to determine the impact of the maternal glucocorticoid surge on fetal development in the absence of LIFR. The mice were analyzed by a variety of histological techniques including immunolabeling and staining techniques (hematoxylin and eosin, Alizarin red S and alcian blue). Plasma corticosterone was assayed using radioimmunoassay.

Results

Maternal adrenalectomy does not improve the prognosis for LIFR null pups and exacerbates the effects of LIFR loss. RU486 noticeably improves many of the tissues affected by LIFR loss: bone density, skeletal muscle integrity and glial cell formation. LIFR null pups exposed during late gestation to RU486 in utero survive natural delivery, unlike LIFR null pups from untreated litters. But RU486 treated LIFR null pups succumb within the first day after birth, presumably due to neural deficit resulting in an inability to suckle.

Conclusion

LIFR plays an integral role in modulating the fetal response to elevated maternal glucocorticoids during late gestation. This role is likely to be mediated through the glucocorticoid receptor and has implications for adult homeostasis as a direct tie between immune, neural and hormone function.  相似文献   

11.
Spectra of thymocyte's nuclear nucleases of control and glucocorticoid treated (5 mg/kg body weight) adrenalectomized rats have been investigated. Using the method of SDS-electrophoresis of nuclear proteins in 3H-DNA-polyacrylamide gel (PAAG) the authors managed to discover a number of polypeptides of 35, 32, 17.7, 17.0, 16.4 kDa molecular mass possessing a nuclease activity. The enzyme of 35 kDa is only active in the presence of Ca2+ and Mg2+ ions and inhibited by cycloheximide. Nucleases of 32, 17.7, 17.0, 16.4 kDa are active in the presence of Ca2+ ions. The enzymic activity of these nucleases increases 60 min after steroid treatment. Nuclease of 17.7, 17.0, 16.4 kDa are poly(ADP-ribosylated). Glucocorticoid mediated activation don't blocked by poly(ADP-ribosylation). Possible role and mechanism of discovered nucleases are discussed.  相似文献   

12.
Using Chromosorb chromatography and HPLC, we measured the plasma concentrations of RU 486, and its monodemethylated (RU 42633), didemethylated (RU 42848) and alcoholic nondemethylated (RU 42698) metabolites up to 72 h following oral ingestion of 100 mg of RU 486 by five female volunteers. The peak plasma level of RU 486 (4.5 mumol/l) occurred within 1 h after ingestion of the compound; at this point significant amounts of the metabolites were also present in the plasma. After the initial redistribution within 6 h the plasma concentrations of RU 486 and three of its metabolites measured remained stable for 24 h. Concentrations of the monodomethylated metabolite exceeded those of the parent steroid during the time period measured, whereas the concentrations of the didemethylated and alcoholic metabolites were lower than those of RU 486, but still notable. At 72 h the concentrations of all the four steroids were still in the micromolar range. The relative binding affinities of these metabolites to human endometrial and myometrial progesterone receptors as well as to human placental glucocorticoid receptors were determined in vitro. The affinity of RU 486 for the human uterine progesterone receptor (Kd = 1.3 X 10(-9) M for RU 486) was higher than that of progesterone but lower than that of ORG-2058, a potent synthetic progestin. The relative binding affinities of the monodemethylated, alcoholic and didemethylated metabolites to the progesterone receptor were 21, 15 and 9%, respectively, compared with the parent compound RU 486; each was lower than that of progesterone (43%). RU 486 had an approx. 4-fold higher relative binding affinity to the glucocorticoid receptor than dexamethasone. Interestingly, the relative binding affinities of the metabolites studied to the human glucocorticoid receptor exceeded those of dexamethasone or cortisol. Compared with the parent compound RU 486, they were 61, 48 and 45% for the monodemethylated, alcoholic and didemethylated metabolites, respectively; each was higher than that of dexamethasone (23%). The affinity of dexamethasone to the human glucocorticoid receptor was 1.6 X 10(-9) M. These data indicate that the pool of certain metabolites of RU 486 may contribute to a significant extent to the antiprogestagenic (23-33%) and even greater extent to the antiglucocorticoid (47-61%) effects of RU 486.  相似文献   

13.
Effects of aldosterone on its target cells are generally considered to be mediated through the genomic pathway. However, recent studies have evidenced rapid effects of the hormone that involve a non-genomic mechanism. In this study, we show that, in the RCCD2 rat cortical collecting duct cell line, the early effect of the hormone on transepithelial sodium transport is neither antagonized by the mineralo- and glucocorticoid receptors antagonists RU26752 and RU486, nor blocked by mRNA and protein synthesis inhibitors. Interestingly, the plasma membranes of RCCD2 cells specifically bind 3H-aldosterone but not 3H-dexamethasone, a binding that is not displaced in the presence of RU26752 or RU486, suggesting the presence of an aldosterone membrane receptor. In addition, the early aldosterone-induced increase in sodium transport is blocked by the addition of a specific inhibitor of carboxyl methyl transferase. These results suggest that, in RCCD2 cells, the early aldosterone-induced increase in sodium transport is not mediated through the genomic pathway but through a membrane receptor-mediated signal and could involve a rapid carboxyl methylation process regulated by aldosterone.  相似文献   

14.
Effects of RU486 on the induction of aromatase by dexamethasone via glucocorticoid receptor were determined using cultured human skin fibroblasts. Competition of [3H]dexamethasone binding to the cytosol receptor was 7 times stronger with RU486 than with dexamethasone. The order of the strength of competition was RU486 greater than dexamethasone greater than betamethasone greater than prednisolone greater than hydrocortisone. RU486 abolished a specific 8.6 S [3H]dexamethasone binding peak in the cytosol, determined using a sucrose density gradient analysis. Dexamethasone markedly induced aromatase and this event was strongly suppressed by RU486, in a dose-dependent manner, in the cultured skin fibroblasts. A linear correlation between the strength of competition and the induction of aromatase of various glucocorticoids was observed. RU486 non-competitively inhibited aromatase induction by dexamethasone determined from a double reciprocal plot of aromatase activity, with respect to [3H]androstenedione concentration in the presence of RU486. These results show that RU486 is a peripheral noncompetitive antiglucocorticoid on aromatase induction by glucocorticoid in human skin fibroblasts and that aromatase induction is a good marker for the biological function of glucocorticoid receptor in human skin fibroblasts.  相似文献   

15.
The third component of C, C3, is the key opsonin of the C cascade and is produced locally within the lung by pulmonary epithelial cells, macrophages, and fibroblasts. Because glucocorticoids regulate the maturation and expression of several physiologically important genes in pulmonary epithelial cells, we examined the effects of glucocorticoids on C3 mRNA expression and C3 synthesis by the human pulmonary epithelial cell line, A549. Treatment with dexamethasone enhanced C3 production in a time- and dose-dependent fashion such that concentrations of dexamethasone greater than or equal to 0.001 microM significantly increased C3 production on day 3 of culture. Natural glucocorticoids, corticosterone, cortisol, and 11-deoxycortisol also increased C3 concentrations in A549 supernatants. Both cycloheximide and the glucocorticoid receptor antagonist, RU486, individually inhibited the effect of dexamethasone on C3 production. Northern analysis demonstrated that the steady state 5.2-kb C3 message increased in A549 cells within 10 h of treatment with dexamethasone. RU486 inhibited the effect of dexamethasone on C3 mRNA expression. The integrity of the C3 thiolester bond, as measured by [3H]iodoacetic acid titration and hemolytic assay, was not disrupted by dexamethasone. We conclude that glucocorticoids such as dexamethasone enhance the expression of C3 mRNA and increase the production of functionally active C3 by A549 cells by a mechanism that is mediated by the intracellular glucocorticoid receptor.  相似文献   

16.
Yan M  Kuang X  Scofield VL  Shen J  Lynn WS  Wong PK 《Steroids》2007,72(5):415-421
We have previously demonstrated that spontaneous DNA synthesis in immature thymocytes of Atm-/- mice is elevated, and that treatment with the glucocorticoid dexamethasone (Dex) attenuates this increased DNA synthesis and prevents the development of thymic lymphomas. Deregulation of c-myc may drive the uncontrolled proliferation of Atm-/- thymocytes, since upregulation of c-myc parallels the elevated DNA synthesis in the cells. In this study, we show that the glucocorticoid receptor (GR) is expressed at high levels in Atm-/- thymocytes and in Atm-/- thymic lymphoma cells, although serum glucocorticoid (GC) levels in Atm-/- mice are similar to those in Atm+/+ mice. In cultured Atm-/- thymic lymphoma cells treated with Dex, GR nuclear translocation occurs, resulting in suppression of DNA synthesis and c-myc expression at both the mRNA and protein levels. Interestingly, the GR antagonist RU486 also causes GR nuclear translocation, but does not affect DNA synthesis and c-myc expression in Atm-/- thymic lymphoma cells. As expected, RU486 reverses the suppressive effects of Dex on DNA synthesis and c-myc expression. Administration of Dex to Atm-/- mice decreases the elevated c-Myc protein levels in their thymocytes. These findings suggest that GC/GR signaling plays an important role in regulating c-myc expression in Atm-/- thymocytes and thymic lymphoma cells.  相似文献   

17.
The antiprogesterone and antiglucocorticoid compound RU 486 added to pregnant rabbit mammary gland explant cultures had no effect alone but significantly stimulated casein production in the presence of ovine prolactin (PRL) in a dose dependent manner. This stimulation was inhibited by progesterone (Pg) and the Pg agonist R5020. When the explants were cultured for 5 days with two changes of medium, to eliminate all steroids, and hormones added afterwards, the effect of PRL was potentiated, Pg was no longer inhibitory and RU 486 had no effect, RU 486 also could inhibit the stimulatory action of glucocorticoids added to the cultures along with PRL. The compound was able to displace [3H]dexamethasone and [3H]R 5020 from mammary gland glucocorticoid and Pg receptors respectively and proved to have a high relative binding affinity (RBA) for both receptors when compared with typical ligands for each receptor. The RBAs of RU 486 and the steroids used in this study to mammary gland glucocorticoid and Pg receptors correlated well with the ability of RU 486 to block their biological activities. These results demonstrate that RU 486 has both antiglucocorticoid and antiprogesterone activities in pregnant rabbit mammary glands as well as the existence of a strong inhibitory residual action of Pg in the gland that persists during the first 48 h of culture and that can be eliminated by RU 486 or after several days of culture with no hormones.  相似文献   

18.
19.
Apoptosis, or programmed cell death, is a highly regulated physiological process by which individual cells die and are removed from a given population. This process, defined by both morphological and biochemical characteristics, has been extensively studied in the glucocorticoid-induced immature thymocyte model. In the present study we explore the effects of glucocorticoids on variants of the S49.1 thymocyte without (S49-NEO) or with (S49-bcl-2) the bcl-2 proto-oncogene. In S49-NEO cells dexamethasone induced a time- and dose-dependent loss of viability and increase in DNA internucleosomal fragmentation (a biochemical hallmark of apoptosis). Glucocorticoid treatment was also associated with an apoptotic morphology (cell shrinkage, chromatin condensation) and the effects of this steroid could be reversed by the glucocorticoid antagonist RU486. In contrast, S49-bcl-2 cells showed no change in viability, DNA fragmentation or apoptotic morphology. Interestingly, the apoptotic effects of glucocorticoid in S49-NEO cells were mimicked by the translation inhibitor cycloheximide and the zinc chelator 1,10-phenanthroline, suggesting that zinc and translational events are necessary to maintain the nonapoptotic state. Finally, nuclease activity was extracted from glucocorticoid-treated S49-NEO cells but not control cells. Together the results further define the effects of glucocorticoids on these cells and provide insight into the mechanisms controlling apoptosis.  相似文献   

20.
Glucocorticoids suppress the inflammatory response by altering leukocyte traffic and function, cytokine secretion and action, and phospholipid metabolism. We employed the glucocorticoid receptor antagonist RU 486, to examine whether glucocorticoids suppress the inflammatory response through a receptor-mediated mechanism and whether basal glucocorticoid secretion exerts antiinflammatory effects in the resting (non-stress) state. To test these hypotheses we evaluated the effects of increasing doses of dexamethasone, RU 486, or dexamethasone plus RU 486 on the exudate volume and concentrations of leukocytes, prostaglandin E2, (PGE2) and leukotriene B4 (LTB4) in intact rats that received subcutaneous carrageenin. Exudate volume, leukocyte concentration and LTB4 and PGE2 levels were all suppressed by dexamethasone in a dose-dependent fashion (P less than 0.005). RU 486 was able to antagonize fully the suppressive effects of dexamethasone on the inflammatory response (P less than 0.001) and to cause increases of exudate volume and leukocyte, PGE2 and LTB4 concentrations when given alone (P less than 0.05). These increases ranged between 30 and 100% above the basal inflammatory response. We conclude that glucocorticoids most likely suppress the inflammatory response by a glucocorticoid receptor-mediated mechanism and under basal conditions exert tonic antiinflammatory effects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号