首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
The temperature dependence of the properties of unitary currents in cultured rat ventricular myocytes has been studied. Currents flowing through an ATP-dependent K+ channel were recorded from inside-out patches with the bath temperature varied from 10 degrees to 30 degrees C. The channel conductance was 56 pS at room temperature (22 degrees C), and the amplitudes of unitary currents and the channel conductance exhibited a relatively weak (Q10 from 1.4 to 1.6) dependence on temperature. The temperature dependence of channel mean open times was biphasic with the low temperature (10-20 degrees C) range showing a relatively stronger temperature dependence (Q10 of 2.3) than the high temperature (20-30 degrees C) range (Q10 of 1.6). The activation energies for the two regions were determined from an Arrhenius plot with the activation energy, corresponding to the lower temperature range, near 16 kcal/mol. Thermodynamic analysis, using transition rate theory, indicated that the formation of a transition state prior to channel closure to be associated with a positive entropy component for the high Q10 region.  相似文献   

2.
Voltage-dependent calcium channels (VDCC) in ventricular myocytes from rainbow trout (Oncorhynchus mykiss) were investigated in vitro using the perforated patch-clamp technique, which maintains the integrity of the intracellular milieu. First, we characterized the current using barium as the charge carrier and established the doses of various pharmacological agents to use these agents in additional studies. Second, we examined the current at several physiological temperatures to determine temperature dependency. The calcium currents at 10 degrees C (acclimation temperature) were identified as L-type calcium currents based on their kinetic behavior and response to various calcium channel agonists and antagonists. Myocytes were chilled (4 degrees C) and warmed (18 and 22 degrees C), and the response of VDCC to varying temperatures was observed. There was no significant dependency of the current amplitude and kinetics on temperature. Amplitude decreased 25-36% at 4 degrees C (Q(10) approximately 1.89) and increased 18% at 18 degrees C (Q(10) approximately 1.23) in control, Bay K8644 (Bay K)-, and forskolin-enhanced currents. The inactivation rates (tau(i)) did not demonstrate a temperature sensitivity for the VDCC (Q(10) 1.23-1. 92); Bay K treatment, however, increased temperature sensitivity of tau(i) between 10 and 18 degrees C (Q(10) 3.98). The low Q(10) values for VDCC are consistent with a minimal temperature sensitivity of trout myocytes between 4 and 22 degrees C. This low-temperature dependency may provide an important role for sarcolemmal calcium channels in adaptation to varying environmental temperatures in trout.  相似文献   

3.
The tissue-specific changes in protein synthesis were tracked in relation to the seasonal metabolic depression in cunner (Tautogolabrus adsperus). In vivo protein synthesis rate and total RNA content were determined in liver, white muscle, brain, heart, and gill during periods of normal activity before metabolic depression, entrance into and during winter dormancy, and during the recovery period. The decrease in water temperature from 8 degrees C to 4 degrees C was accompanied by a 55% depression of protein synthesis in liver, brain, and heart and a 66% depression in gill. Protein synthesis in white muscle fell below detectable levels at this temperature. The depression of protein synthesis is an active process (Q(10) = 6-21 between 8 degrees C and 4 degrees C) that occurs in advance of the behavioral and physiological depression at the whole animal level. Protein synthesis was maintained at these depressed levels in white muscle, brain, heart, and gill until water temperature returned to 4 degrees C in the spring. Liver underwent a hyperactivation in the synthesis of proteins at 0 degrees C, which may be linked to antifreeze production. During the recovery period, a hyperactivation of protein synthesis occurred in white muscle, which is suggestive of compensatory growth, as well as in heart and liver, which is considered to be linked to increased activity and feeding. Seasonal changes in total RNA content demonstrate the depression of protein synthesis with decreasing temperature to be closely associated with translational capacity, but the stimulation of protein synthesis during recovery appears to be associated with increased translational efficiency.  相似文献   

4.
CO(2) release patterns of three drywood termite species were investigated using flow-through respirometry techniques. Eight hours of real-time CO(2) release data were recorded for pseudergates of Cryptotermes cavifrons Banks, Incisitermes minor (Hagen), and I. tabogae (Snyder) at 20-40 degrees C. Cyclic release of CO(2) was observed in 20-90% of C. cavifrons, 70-100% of I. tabogae, and 87-100% of I. minor pseudergates. Variability of the recordings (calculated as the coefficient of variability or CV) was used to estimate the level of cycling in each recording. CV ranged from 14.53+/-2.57 (40 degrees C) to 32.33+/-1.12% (30 degrees C) in C. cavifrons, 20.24+/-2.44 (35 degrees C) to 67.3+/-10.3% (20 degrees C) in I. minor, and 15.9+/-1.46 (35 degrees C) to 34.15+/-6.18% (20 degrees C) in I. tabogae. The relationship between temperature and CV for each species was modeled using non-linear regression. CV of both Incisitermes spp. decreased exponentially with temperature, while C. cavifrons CV followed a Gaussian model, indicating an optimal cycling temperature of approximately 30 degrees C. Mean V.CO(2) values were determined for each species as a function of temperature, and ranged from 0.1 ml CO(2) g(-1) h(-1) (I. minor at 20 degrees C) to 0.8 ml CO(2) g(-1) h(-1) (C. cavifrons at 40 degrees C). For all three species, V.CO(2) significantly increased linearly with temperature. Colinearity tests indicated that different models described the V.CO(2) relationship with temperature for both genera. Q(10) values for V.CO(2) over the range of 20-40 degrees C were 1.92 for I. minor, 1.66 for I. tabogae, and 1.62 for C. cavifrons pseudergates.  相似文献   

5.
Physiological responses (oxygen consumption) and behavioral responses (feeding and activity) of the mud snails Hydrobia ulvae and Hydrobia glyca at different salinities (20 per thousand-80 per thousand) and temperatures (20 degrees and 30 degrees C) were studied. After 24 h under experimental conditions, both Hydrobia species already showed maximal activities (>90%) for a wide salinity range (30 per thousand-70 per thousand), with significant differences in activity between species only outside the usual salinity range of the studied lagoon. In contrast, egestion rates of H. glyca were significantly higher at the lowest salinities tested (30 per thousand and 40 per thousand) irrespective of water temperature, whereas egestion rates of H. ulvae were always significantly higher (57% on average) at 20 degrees C than at 30 degrees C and at the usual salinities found in the field (40 per thousand and 50 per thousand). Both species showed an oxyregulatory response to dissolved oxygen concentrations ranging from saturation to 1.5 mg O(2) L(-1), although specific oxygen consumption rates were significantly higher at 30 degrees C than at 20 degrees C (Q(10)=1.47+/-0.08 for H. ulvae and Q(10)=12.1+/-0.06 for H. glyca) and at the lowest salinities (30 per thousand-50 per thousand for H. ulvae and 30 per thousand-40 per thousand for H. glyca). On average, specific rates were higher for the smaller-sized H. glyca (1.64+/-0.03 microg O(2) mg(-1) ash-free dry weight [AFDW]) than for H. ulvae (1.35+/-0.03 microg O(2) mg(-1) AFDW). Despite the overlapping of their tolerances to high temperatures and salinities, the observed interspecies differences could play a certain role in the distribution of H. ulvae and H. glyca in the studied habitat. In particular, the decreasing feeding activity but increasing respiration of H. ulvae at 30 degrees C for salinities that usually occur in the studied lagoon could represent disadvantages to H. glyca during the warm period.  相似文献   

6.
The maximal instantaneous muscle power (wi,max) probably reflects the maximal rate of adenosine 5'-triphosphate (ATP) hydrolysis (ATPmax), a temperature-dependent variable, which gives rise to the hypothesis that temperature, by affecting ATPmax, may also influence wi,max. This hypothesis was tested on six subjects, whose vastus lateralis muscle temperature (Tmuscle) was monitored by a thermocouple inserted approximately 3 cm below the skin surface. The Wi,max was determined during a series of high jumps off both feet on a force platform before and after immersion up to the abdomen for 90 min in a temperature controlled (T = 20 +/- 0.1 degrees C) water bath. Control Tmuscle was 35.8 +/- 0.7 degrees C, with control Wi,max being 51.6 (SD 8.7) W.kg-1. After cold exposure, Tmuscle decreased by about 8 degrees C, whereas wi,max 27% lower. The temperature dependence of Wi,max was found to be less (Q10 less than 1.5, where Q10 is the temperature coefficient as calculated in other studies) than reported in the literature for ATPmax. Such a low Q10 may reflect an increase in the mechanical equivalent of ATP splitting, as a consequence of the reduced velocity of muscle contraction occurring at low Tmuscle.  相似文献   

7.
E Pate  G J Wilson  M Bhimani    R Cooke 《Biophysical journal》1994,66(5):1554-1562
We have investigated the effects of the orthophosphate (P(i)) analog orthovanadate (Vi) on maximum shortening velocity (Vmax) in activated, chemically skinned, vertebrate skeletal muscle fibers. Using new "temperature-jump" protocols, reproducible data can be obtained from activated fibers at high temperatures, and we have examined the effect of increased [Vi] on Vmax for temperatures in the range 5-30 degrees C. We find that for temperatures < or = 20 degrees C, increasing [Vi] inhibits Vmax; for temperatures > or = 25 degrees C, increasing [Vi] does not inhibit Vmax. Attached cross-bridges bound to Vi are thought to be an analog of the weakly bound actin-myosin.ADP-P(i) state. The data suggest that the weakly bound Vi state can inhibit velocity at low temperature, but not at high temperature, with the transition occurring over a narrow temperature range of < 5 degrees C. This suggests a highly cooperative interaction. The data also define a Q10 for Vmax of 2.1 for chemically skinned rabbit psoas fibers over the temperature range of 5-30 degrees C.  相似文献   

8.
Contractile properties of the fast-twitch glycolytic (FG) portion of the iliofibularis muscle and sprint running performance were studied at approximately 5 degrees C intervals from 15-44 degrees C in the lizard Dipsosaurus dorsalis. Maximal running velocity (VR) and stride frequency (f) were both greatest when body temperature (Tb) was 40 degrees C, the field-active Tb in Dipsosaurus. At 40 degrees C VR was 4.3 +/- 0.2 m/s and f was 13.5 +/- 0.5 s-1. Between 25 and 40 degrees C, the thermal dependencies of VR and f were approximately constant (Q10's of 1.31 and 1.36 got VR and f, respectively). Below 25 degrees C performance declined more markedly with decreasing temperature. At 20 degrees C strides were qualitatively normal, but VR was only half of the value at 25 degrees C. At 15 degrees C the lizards were substantially incapacitated, and VR was 10% of the value at 20 degrees C. Stride length was approximately 0.33 m and changed very little with Tb from 20-44 degrees C. The time dependent contractile properties of FG muscle were affected more by temperature than was sprint performance. The maximal velocity of shortening at zero load (VO) was 18.7 0/s at 40 degrees C and had a Q10 of 1.7 from 25-40 degrees C. Maximal power output (Wmax) determined from the force-velocity curve was 464 W/kg at 40 degrees C. Below 40 degrees C max varied with temperature with a Q10 of 2-3. The shape of the force-velocity curve changed little with temperature (Wmax/POVO = 0.11). Between 25 and 40 degrees C a relatively temperature-independent process must modulate the effects of temperature on the contractile properties of the muscles that supply the power for burst locomotion. Storage and recovery of elastic energy appears to be a likely candidate for such a process. Below 25 degrees C, however, the contraction time is prolonged to such an extent that the f attainable is limited by the minimum time taken to contract and relax the muscles.  相似文献   

9.
两种匍灯藓属植物夏季和冬季光合特性的比较研究   总被引:6,自引:5,他引:1  
分别对生长于冬季和夏季的五倍子蚜虫冬寄主藓类植物湿地匍灯藓(Plagiomnium acutum(Lindb.)T.Kop.)和侧枝葡灯藓(Plagiomnium maximoviczii(Lindb.)T.Kop.)的净光合速率及其与光照、温度的关系进了比较研究.结果表明,2种藓类的最大光合能力在夏季分别为125.67和94.63μmolCO2  相似文献   

10.
Short-term temperature effects on the aerobic metabolism of glycogen-accumulating organisms (GAO) were investigated within a temperature range from 10 to 40 degrees C. Candidatus Competibacter Phosphatis, known GAO, were the dominant microorganisms in the enriched culture comprising 93 +/- 1% of total bacterial population as indicated by fluorescence in situ hybridization (FISH) analysis. Between 10 and 30 degrees C, the aerobic stoichiometry of GAO was insensitive to temperature changes. Around 30 degrees C, the optimal temperature for most of the aerobic kinetic rates was found. At temperatures higher than 30 degrees C, a decrease on the aerobic stoichiometric yields combined with an increase on the aerobic maintenance requirements were observed. An optimal overall temperature for both anaerobic and aerobic metabolisms of GAO appears to be found around 30 degrees C. Furthermore, within a temperature range (10-30 degrees C) that covers the operating temperature range of most of domestic wastewater treatment systems, GAOs aerobic kinetic rates exhibited a medium degree of dependency on temperature (theta = 1.046-1.090) comparable to that of phosphorus accumulating organisms (PAO). We conclude that GAO do not have metabolic advantages over PAO concerning the effects of temperature on their aerobic metabolism, and competitive advantages are due to anaerobic processes.  相似文献   

11.
We measured the rate at which the metabolic enzymes lactate dehydrogenase (LDH), citrate synthase (CS), and cytochrome c oxidase (CCO) acclimate in the response to lowered temperature in the axial muscle of tadpoles of Limnodynastes peronii (Anura: Myobatrachidae) over 6 weeks. In addition, we measured growth rates of the tadpoles kept at both temperatures and examined the activities of these enzymes in the liver tissue of the control group and cold-acclimated group at the end of the experiment. We found that LDH acclimates in axial muscle; the differences between the control and cold-acclimated group became apparent after 21 days. After 42 days, the activity of LDH in axial muscle in the cold-acclimated group was 30% greater than the control group. Growth rates were maintained at 0.7 mm/week within both treatments despite the 10 degrees C difference in temperature between experimental groups. Both LDH and CS were increased in activity in the liver (5 and 1.3 times greater, respectively, in the cold-acclimated group). The thermal sensitivity (Q(10)) of LDH was between 20 and 30 degrees C in the cold-acclimated group (1.2+/-0.01) when compared to the control group (1.6+/-0.15). The rate at which acclimation in this species occurs is appropriate for seasonal changes in temperature, and these animals may not be able to respond to a rapid drop in temperature.  相似文献   

12.
Temperature dependence of ADP/ATP translocation in mitochondria   总被引:1,自引:0,他引:1  
The temperature dependence of the adenine nucleotide exchange in mitochondria has been determined by employing a rapid mixing, quenching and sampling apparatus and the inhibitor quench-back exchange method. Thus the exchange is resolved down to 0.1 s. Rates are evaluated from accumulating the time-dependent progress at about 10 points. The exchange rate in liver mitochondria was determined from -10 degrees C to + 10 degrees C in the presence of 20% glycol, from 0 degrees C to 25 degrees C, and from 20 degrees C to 40 degrees C under partial inhibition by carboxyatractylate. The total range between -10 degrees C to + 40 degrees C has only one temperature break at 13 degrees C. From the Arrhenius plot between -10 degrees C to + 13 degrees C, EA approximately equal to 140 kJ and above 13 degrees C, EA approximately equal to 56 kJ is evaluated, corresponding to a Q10 of 8 and 2 respectively. In beef heart mitochondria the exchange rate was measured between 0 degrees C and 20 degrees C, and between 15 degrees C and 30 degrees C under partial inhibition with carboxyatractylate. There is a temperature break around 14 degrees C with EA approximately equal to 143 kJ between 0 degrees C and 14 degrees C and EA approximately equal to 60 kJ from 15 degrees C to 30 degrees C. The extrapolated translocation rates at 37 degrees C are 500 and 1800 mumol min-1 (g protein)-1 for rat liver and for beef heart mitochondria respectively. The temperature break is suggested to reflect a conformation change since there is no reversed break at low temperature, the temperature break changes in sonic particles and no lipid phase transition at 14 degrees C in mitochondria has been reported.  相似文献   

13.
Sarcoplasmic reticulum with calcium transport activity has been isolated from the cross-striated adductor muscle of the scallop, which lives in cold (< or = 20 degrees C) sea water, by using pH 7.0 buffer solution both to homogenize the tissue and to sediment the membrane fraction. The yield of the preparation was 60-100 mg protein from 100 g of the scallop muscle. Ca(2+)-activated ATPase protein of about 100 kDa accounted for 40-50% of the protein preparation. The maximum activities of ATP-dependent, oxalate-facilitated calcium accumulation and Ca(2+)-ATPase were observed at a pH of about 7.0 and temperature of 20-30 degrees C, and their values were about 2 mumol Ca2+/mg of protein/min and about 3 mumol ATP hydrolysis/mg of protein/min, respectively. At 0 degree C, 10-20% of these activities was maintained, while at 37 degrees C, the activities were irreversibly lost. The Ca(2+)-ATPase activity was half-maximally activated at about 0.3 microM [Ca2+]. The ATPase activity exhibited non-Michaelian behavior with respect to ATP, with two different Km values of approximately 10 microM and 0.1-0.3 mM. GTP, CTP, and ITP were also hydrolyzed by the preparation at a rate of 10-30% of that of ATP. The preparation was stored at -80 degrees C with retention of function for about a year.  相似文献   

14.
Diamondback terrapins experience broad fluctuations in temperature on both a daily and seasonal basis in their estuarine environment. We measured metabolic enzyme activity in terrapin muscle tissue to assess thermal dependence and the role of temperature in seasonal metabolic downregulation in this species. Activity of lactate dehydrogenase (LDH), pyruvate kinase (PK), citrate synthase (CS), and cytochrome c oxidase (CCO) was assayed at 10, 20, 30, and 40 °C for tissue collected during summer and winter. The Q(10) for enzyme activity varied between 1.31 and 2.11 within the temperature range at which terrapins were active (20-40 °C). The Q(10) for LDH, CS, and CCO varied between 1.39 and 1.76 and between 10 and 20 °C, but PK exhibited heightened thermal sensitivity within this lower temperature range, with a Q(10) of 2.90 for summer-collected tissue and 5.55 for winter-collected tissue. There was no significant effect of season on activity of LDH or PK, but activity of CS and CCO was significantly lower in winter-collected tissue compared with summer-collected tissue. Results indicate that temperature effects contribute to seasonal metabolic downregulation and dormancy in terrapins, but other environmental factors (i.e. oxygen availability), as well as seasonal shifts in blood biochemistry and circulating hormones may also play an important role.  相似文献   

15.
The discontinuous gas exchange cycle (DGC), the cyclic release of CO(2) and uptake of O(2), were investigated in workers and female and male alates of the red imported fire ant, Solenopsis invicta Buren, using real-time CO(2) emission measurement by flow-through respirometry. All S. invicta castes displayed discontinuous emission of CO(2) in the temperature range of 15-25 degrees C, but only male alates and workers exhibited a DGC at 30 degrees C. The closed (C) and flutter (F) periods of the DGC were distinguishable in alates of both sexes at the lowest temperature, but not clearly differentiated in females at temperatures above 15 degrees C, in males above 20 degrees C, or workers at any temperature. DGC frequency increased for all castes as temperature increased, ranging from a low of 0.9+/-0.05 mHz (male alates at 15 degrees C) to 18+/-0.79 mHz (workers at 30 degrees C). O period (or burst) volumes of all castes decreased as temperature increased, and increased with body mass - this mass effect was most pronounced at lower temperatures. Q(10) values for DGC frequency (4.27, 5.81, and 5.62 for workers, female and male alates, respectively) were high compared with Q(10)'s for standard Vdot;(CO(2)). Differences in the salient characteristics of the DGC between castes are presented and discussed, and S. invicta DGC patterns are compared to known values for some other ant species.  相似文献   

16.
Using the patch-clamp method temperature dependences of the chord conductance of single potential--dependent slow and fast K+ channels in mollusk neurons were studied. Under control conditions (20 degrees C, 0 mV, [K+]o = 1.5 mM and [K+]i = 100 mM) the conductances of the fast and slow K+ channels were equal to 20-25 pS and 30-40 pS, respectively. Besides, the temperature dependences of the currents through the K+ channels of lesser conductance (5-20 pS) were studied. Some of these channels may be regarded as subtypes of the fast and slow K+ channels named above. It was found that for the channels of all types single channel currents arise with temperature. However, in the range of 10-20 degrees C an anomalous conductance decrease at temperature elevation was observed. For all channels except for the fast one at temperatures above 20 degrees C activation energy (delta Ea) calculated from the Arrhenius plots of the currents was about 4 kcal/mol. At the temperatures below 10 degrees C delta Ea was equal to about 12 kcal/mol. In this temperature range delta Ea had a pronounced potential dependency. Temperature dependences of the fast K+ channel conductance were opposite to those of the slow K+ channel to some extent.  相似文献   

17.
In vivo thermal conductivity of the human forearm tissues   总被引:1,自引:0,他引:1  
The effective thermal conductivities of the skin + subcutaneous (keff skin + fat) and muscle (keff muscle) tissues of the human forearm at thermal steady state during immersion in water at temperatures (Tw) ranging from 15 to 36 degrees C were determined. Tissue temperature (Tt) was continuously monitored by a calibrated multicouple probe during a 3-h immersion of the resting forearm. Tt was measured every 5 mm from the longitudinal axis of the forearm (determined from computed-tomography scanning) to the skin surface. Skin temperature (Tsk), heat loss (Hsk), and blood flow (Q) of the forearm, as well as rectal temperature (Tre) and arterial blood temperature at the brachial artery (Tbla), were measured during the experiments. When the keff values were calculated from the finite-element (FE) solution of the bioheat equation, keff skin + fat ranged from 0.28 +/- 0.03 to 0.73 +/- 0.14 W.degrees C-1.m-1 and keff muscle varied between 0.56 +/- 0.05 and 1.91 +/- 0.19 W.degrees C-1.m-1 from 15 to 36 degrees C. The values of keff skin + fat and keff muscle, calculated from the FE solution for Tw less than or equal to 30 degrees C, were not different from the average in vitro values obtained from the literature. The keff values of the forearm tissues were linearly related (r = 0.80, P less than 0.001) to Q for Tw greater than or equal to 30 degrees C. It was found that the muscle tissue could account for 92 +/- 1% of the total forearm insulation during immersion in water between 15 and 36 degrees C.  相似文献   

18.
Root respiration has important implications for understanding plant growth as well as terrestrial carbon flux with a changing climate. Although soil temperature and soil moisture often interact, rarely have these interactions on root respiration been studied. This report is on the individual and combined effects of soil moisture and temperature on respiratory responses of single branch roots of 1-year-old Concord grape (Vitis labruscana Bailey) vines grown in a greenhouse. Under moist soil conditions, root respiration increased exponentially to short-term (1 h) increases in temperature between 10 degrees C and 33 degrees C. Negligible increases in root respiration occurred between 33 degrees C and 38 degrees C. By contrast to a slowly decreasing Q10 from short-term temperature increases, when roots were exposed to constant temperatures for 3 d, the respiratory Q10 between 10 degrees C and 30 degrees C diminished steeply with an increase in temperature. Above 30 degrees C, respiration declined with an increase in temperature. Membrane leakage was 89-98% higher and nitrogen concentration was about 18% lower for roots exposed to 35 degrees C for 3 d than for those exposed to 25 degrees C and 15 degrees C. There was a strong interaction of respiration with a combination of elevated temperature and soil drying. At low soil temperatures (10 degrees C), respiration was little influenced by soil drying, while at moderate to high temperatures (20 degrees C and 30 degrees C), respiration exhibited rapid declines with decreases in soil moisture. Roots exposed to drying soil also exhibited increased membrane leakage and reduced N. These findings of acclimation of root respiration are important to modelling respiration under different moisture and temperature regimes.  相似文献   

19.
Cells of Tetrahymena pyriformis--NT1 were cultured at 38 degrees C (Tg 38 degrees C) and 20 degrees C (Tg 20 degrees C) and their properties investigated over the range 0-40 degrees C. Tg 20 degrees C cells were viable in the range 3-33 degrees C and changes in their properties were readily reversible between 10 degrees C and 30 degrees C. Tg 38 degrees cells were viable in the range 40-10 degrees C and their property changes were immediately reversible in the range 40-23 degrees C. The I-V relations of Tg 38 degrees C cells showed increased excitability as the cells were cooled from 40 degrees C. At 10 degrees C there was a considerable loss of excitability and slope resistance. Cooling Tg 20 degrees C cells from 20 degrees C gave a similar pattern, although over a narrower temperature range. Warming Tg 20 degrees C Tetrahymena above 20 degrees C led to a progressive loss of excitability and the cells were markedly less viable above 35 degrees C. Within physiological limits the regenerative spike magnitude, repolarization time, time to peak and input resistance increased as temperature was lowered, whereas resting potential was diminished. When compared at their growth temperatures and most intermediate temperatures, the value of the various parameters monitored were generally different for the two cultures. The Q10 value for resting potential changes of Tg 20 degrees C cells about 20 degrees C was 1.20. As in T. vorax this was significantly (P less than 0.01) greater than that predicted for a diffusion potential and suggested that T. pyriformis--NT1 may have an electrogenic pump component in its membrane potential.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号