首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The authors summarize their work concerning the mechanism of pancreatic lipase activation. The activation of lipase by submicellar SDS concentrations was found to imitate closely enough its activation by an interface. Lipase activation was shown to be caused by changes in the rate constants for substrate chemical transformation and to involve conformational changes of the enzyme and its association. The complex of a conformationally modified lipase with the detergent, which acts as a 'structure-forming' agent, is associated with native lipase molecules setting up their active site. The mechanism of lipase activation at an interface both in vitro and in vivo is discussed.  相似文献   

2.
Cytochrome b558 in phagocytes is a transmembrane protein composed of large and small subunits and considered to play a key role in O2- generation during the respiratory burst. The COOH-terminal regions of the cytochrome subunits protrude to the cytoplasmic side and are assumed to be the sites for association with cytosolic components to form an active O(2-)-generating complex (Imajoh-Ohmi, S., Tokita, K., Ochiai, H., Nakamura, M., and Kanegasaki, S. (1992) J. Biol. Chem. 267, 180-184). We show here that two synthetic peptides corresponding to the COOH-terminal region of each subunit inhibit NADPH-dependent oxygen uptake induced by sodium dodecyl sulfate (SDS) in a cell-free system consisting of plasma membrane and cytosol. The inhibition was observed when either peptide was added to the system before, but not after, the activation with SDS suggesting that interaction between the COOH-terminal regions of the cytochrome subunits and cytosolic components is important for the assembly and the activity of the O(2-)-generating system. Using the cross-linking reagent dimethyl 3,3'-dithiobis-propionimidate, we found that the cytosolic 47-kDa protein, an essential component of the O(2-)-generating system, interacted with the synthetic peptides in the presence of SDS. In addition to the 47-kDa protein, a 17-kDa protein was found to be associated with the peptide corresponding to the COOH-terminal region of the small subunit. These results indicate that the cytosolic COOH-terminal regions of cytochrome b558 subunits are the binding sites for both the cytosolic 47-kDa protein and the 17-kDa protein and that the binding takes place during activation of the system.  相似文献   

3.
Hydrogenases catalyze the reversible activation of dihydrogen. We have previously demonstrated that the purified hydrogenase from the nitrogen-fixing microorganism Azotobacter vinelandii is an alpha beta dimer (98,000 Da) with subunits of 67,000 (alpha) and 31,000 (beta) daltons and that this enzyme contains iron and nickel. The enzyme can be purified anaerobically in the presence of dithionite in a fully active state that is irreversibly inactivated by exposure to O2. Analysis of this hydrogenase by sodium dodecyl sulfate (SDS) polyacrylamide gel electrophoresis (PAGE) following boiling in SDS yields two protein staining bands corresponding to the alpha and beta subunits. However, when this enzyme was treated with SDS (25-65 degrees C) for up to 30 min under anaerobic/reductive conditions and then analyzed by anaerobic SDS-PAGE, a protein staining band corresponding to an apparent molecular mass of 58,000 Da was observed that stained for hydrogenase activity. Analysis of the 58,000-Da activity staining band by a Western immunoblot or a second aerobic SDS-polyacrylamide gel revealed that this protein actually consisted of both the alpha and beta subunits. Thus, the activity staining band (apparent 58,000 Da) represents the 98,000-Da dimer migrating abnormally on SDS-PAGE. Treatment of the anaerobically purified hydrogenase with SDS under aerobic conditions or under anaerobic conditions with electron acceptors prior to electrophoresis resulted in no activity staining band and the separated alpha and beta subunits. A. vinelandii hydrogenase was also purified under aerobic conditions in an inactive O2 stable form that can be activated by removal of oxygen followed by addition of reductant. This enzyme (as isolated), the activated form, and the reoxidized form were analyzed for their stability toward denaturation by SDS. We conclude that the dissociation of the A. vinelandii hydrogenase subunits in SDS is controlled by the redox state of the enzyme suggesting an important role of one or more redox sites in controlling the structure of this enzyme.  相似文献   

4.
The effects of bovine serum albumin on rat pancreatic lipase and bovine milk lipoprotein lipase were studied in a system of triacylglycerol emulsions stabilized by 1 1 mg/ml albumin. At concentrations greater than 1 mg/ml, albumin inhibited the activity of pancreatic lipase and interfered with enzyme binding to emulsified triacylglycerol particles. These effects could be countered by occupying five fatty acid binding sites on albumin with oleic acid. Following an initial lag period which increased with albumin concentrations, enzyme activity escaped from inhibition presumably due to saturation of fatty acid sites on albumin with oleic acid. Pancreatic lipase was active at 1 mg/ml albumin and 1 mM emulsion-bound oleic acid in the system. The effects of albumin on lipoprotein lipase were diametrically opposed to the above; enzyme activity was completely inhibited by 0.1 mM oleic acid, it increased with increasing fatty acid-free albumin concentrations and decreased as the fatty acid sites on albumin were filled. At 1 mM oleic acid and no added albumin the enzyme failed to bind at the oil water interface, whereas fatty acid-free or saturated albumin had no effect on binding. It is concluded that if the inhibition of pancreatic lipase by albumin is due to the inaccessibility of the enzyme to an oil-water interface blocked by denatured albumin, then albumin saturated with oleic acid would seem to be protected from unfolding at the interface and more readily displaced by the lipase. Pancreatic lipase and lipoprotein lipase, although sharing a number of common features, are distinct enzymes both functionally and mechanistically.  相似文献   

5.
1. Ten mouse monoclonal antibodies to human complement component C8 were prepared. It was found that six of these antibodies reacted with the alpha-subunit, two with the beta-subunit and two with the gamma-subunit, when assessed by immunoblotting after separation of C8 subunits by SDS/polyacrylamide-gel electrophoresis. 2. Epitope analysis of the ten monoclonal antibodies in a competitive binding assay showed that the six antibodies to the alpha-subunit could be classified in four overlapping epitope groups. The antibodies to the beta- and gamma-subunits bound to a single antigenic site on each, but also cross-reacted with the antigenic sites on the alpha-subunit. 3. Monoclonal anti-C8 immunoaffinity columns were used to purify C8 from fresh human plasma and to prepare C8-depleted serum. Immunoaffinity purified C8 was biologically active when assessed by using haemolysis assays of sheep and rabbit erythrocytes. 4. Salt elution was used to purify either alpha gamma- or beta-subunits when C8 was respectively bound to an anti-beta or anti-alpha immunoaffinity column. The purified subunits reconstituted C8-depleted serum when added together in a haemolysis assay.  相似文献   

6.
The complete sequence of the horse pancreatic lipase was elucidated by combining polypeptide chain and cDNA sequencing. Among the structural features of horse lipase, it is worth mentioning that Lys373 is not conserved. This residue, which is present in human, porcine and canine lipases, has been assumed to be involved in p-nitrophenyl acetate hydrolysis by pancreatic lipases. Kinetic investigation of the p-nitrophenyl acetate hydrolysis by the various pancreatic lipases and by the C-terminal domain (336-449) of human lipase reveals that this hydrolysis is the result of the superimposition of independent events; a specific linear hydrolysis occurring at the active site of lipase, a fast acylation depending on the presence of Lys373 and a non-specific hydrolysis most likely occurring in the C-terminal domain of the enzyme. This finding definitely proves that pancreatic lipase bears only one active site and raises the question of a covalent catalysis by pancreatic lipases. Moreover, based on sequence comparison with the above-mentioned pancreatic lipases, three residues located in the C-terminal domain, Lys349, Lys398 and Lys419, are proposed as possible candidates for lipase/colipase binding.  相似文献   

7.
A chemical modification approach was used in this study to identify the active site serine residue of human pancreatic lipase. Purified human pancreatic lipase was covalently modified by incubation with [3H], [14C] tetrahydrolipstatin (THL), a potent inhibitor of pancreatic lipase. The radiolabeled lipase was digested with thermolysin, and the peptides were separated by HPLC. A single THL-peptide-adduct was obtained which was identical to that obtained earlier from porcine pancreatic lipase. This pentapeptide with the sequence VIGHS is covalently bound to a THL molecule via the side chain hydroxyl group of the serine unit corresponding to Ser-152 of the lipase. The selective cleavage of the THL-serine bond by mild acid treatment resulted in the formation of the delta-lactone Ro 40-4441 in high yield and clearly proves that THL is attached via an ester bond and with retention of stereochemistry at all chiral centers to the side chain hydroxyl group of Ser-152 of the lipase. The results obtained for human pancreatic lipase corroborate the inhibition mechanism of THL found on the porcine enzyme, and are in full agreement with the identification of the Ser-152 ... His-263 ... Asp-176 catalytic triad in the X-ray structure of human pancreatic lipase.  相似文献   

8.
In this study, the essential serine residue and 2 other amino acids in human pancreatic triglyceride lipase (triacylglycerol acylhydrolase, EC 3.1.1.3) were tested for their contribution to the enzyme's catalytic site or interfacial binding site. By site-specific mutagenesis of the cDNA for human pancreatic lipase, amino acid substitutions were made at Ser153, His264, and Asp177. The mutant cDNAs were expressed in transfected COS-1 cells. Both the medium and the cells were examined for the presence of pancreatic lipase by Western blot analysis. The activity of the expressed proteins against triolein and the interfacial binding was measured. Proteins with mutations in Ser153 were secreted by the cells and bound to interfaces but had no detectable activity. Changing His264 to a leucine or Asp177 to an asparagine also produced inactive lipase. Substituting glutamic acid for Asp177 produced an active protein. These results demonstrate that Ser153 is involved in the catalytic site of pancreatic lipase and is not crucial for interfacial binding. Moreover, the essential roles of His264 and Asp177 in catalysis were demonstrated. A Ser-His-Asp catalytic triad similar to that present in serine proteases is present in human pancreatic lipase.  相似文献   

9.
Cholesterol ester hydrolase (sterol-ester acylhydrolase, EC 3.1.1.13) was purified from human pancreatic tissue by column chromatography and acetone precipitation, leading to a 400-fold enrichment. Isoelectric focusing of this product reveals a double-band at pH 4.5 and 4.6. The molecular weight was estimated at 320 kDa by means of Sephadex filtration on calibrated columns. Obviously these large molecules represent a tetrameric form of the monomeric subunit (molecular mass 76-80 kDa), which is also enzymatically active. It was found together with the dimeric form in pancreatic juice, where the tetrameric enzyme is responsible for the major part of the hydrolytic activity, splitting cholesterol ester as well as synthetic substrates, such as fluorescein or p-nitrophenyl esters. Attempts to split the tetrameric cholesterol ester hydrolase, isolated from pancreatic tissue, into active subunits found additionally in pancreatic juice by the influence of bile acids and proteolytic enzymes failed. The spectral shift method using Rhodamine fluorescence was employed in order to prove that fluorescein dilaurate forms micellar solutions and mixed micelles when bile salts are present.  相似文献   

10.
A new form of transcarboxylase has been isolated which has a molecular weight of 1,200,000, an s20,w of 26 S, and contains 12 biotinyl groups. Transcarboxylase as isolated previously has a molecular weight of 790,000, an s20,w of 18 S, and contains six biotinyl groups. The larger species of enzyme consists of a central hexameric subunit with six dimeric outer subunits attached to it by biotinyl carboxyl carrier proteins, three each at the opposite faces of the central subunits. This larger species is stable at pH 5.5, but dissociates to the 18 S species at pH values near neutrality with loss of a set of three of the outer subunits with two of the biotinyl carboxyl carrier proteins still attached to each of these subunits. The dissociation to the 18 S form occurs by several rapidly reversible steps and under certain conditions of centrifugation multiple peaks are observed as a consequence of the occurrence of different forms of enzyme with variable numbers of the outer subunits attached to the 18 S enzyme. The s20,w value of the so-called 26 S enzyme varies with conditions. Isolated 18 S enzyme has been combined with isolated outer subunits to form active 26 S enzyme. The newly enzyme is a normal form but has not been isolated previously because of its dissociation to the 18 S form at neutral pH. A procedure is described for the isolation of the 26 S form in a highly purified state. The molecular weight of the enzyme has been determined by high speed meniscus depletion. In addition, a procedure is described for dissociation of the 26 S form of the enzyme and isolation of the resulting outer subunits with the biotinyl subunits still attached to it. Evidence is presented that all six outer subunits participate in the enzymatic reaction which includes the demonstration that; (a) all 12 biotins of the 26 S form of the enzyme can be carboxylated with [3-14C]methylmalonyl coenzyme A; (b) there is an increase in enzymatic activity when the outer subunits are combined with the normal 18 S enzyme with formation of the 26 S enzyme; and (c) a 26 S form of the enzyme is active which is prepared by combination of inactive 18 S trypsin-treated transcarboxylase with the outer subunits. The trypsin-treated 18 S enzyme is inactive because trypsin removes the biotin as biotinyl peptides and the 26 S enzyme is active because of the second set of active outer subunits.  相似文献   

11.
Fat digestion in humans requires not only the classical pancreatic lipase but also gastric lipase, which is stable and active despite the highly acidic stomach environment. We report here the structure of recombinant human gastric lipase at 3.0-A resolution, the first structure to be described within the mammalian acid lipase family. This globular enzyme (379 residues) consists of a core domain belonging to the alpha/beta hydrolase-fold family and a "cap" domain, which is analogous to that present in serine carboxypeptidases. It possesses a classical catalytic triad (Ser-153, His-353, Asp-324) and an oxyanion hole (NH groups of Gln-154 and Leu-67). Four N-glycosylation sites were identified on the electron density maps. The catalytic serine is deeply buried under a segment consisting of 30 residues, which can be defined as a lid and belonging to the cap domain. The displacement of the lid is necessary for the substrates to have access to Ser-153. A phosphonate inhibitor was positioned in the active site that clearly suggests the location of the hydrophobic substrate binding site. The lysosomal acid lipase was modeled by homology, and possible explanations for some previously reported mutations leading to the cholesterol ester storage disease are given based on the present model.  相似文献   

12.
Lipoprotein lipase (LPL) plays a key role in lipid metabolism. Molecular modeling of dimeric LPL was carried out using insight ii based upon the crystal structures of human, porcine, and horse pancreatic lipase. The dimeric model reveals a saddle-shaped structure and the key heparin-binding residues in the amino-terminal domain located on the top of this saddle. The models of two dimeric conformations - a closed, inactive form and an open, active form - differ with respect to how surface-loop positions affect substrate access to the catalytic site. In the closed form, the surface loop covers the catalytic site, which becomes inaccessible to solvent. Large conformational changes in the open form, especially in the loop and carboxyl-terminal domain, allow substrate access to the active site. To dissect the structure-function relationships of the LPL carboxyl-terminal domain, several residues predicted by the model structure to be essential for the functions of heparin binding and substrate recognition were mutagenized. Arg405 plays an important role in heparin binding in the active dimer. Lys413/Lys414 or Lys414 regulates heparin affinity in both monomeric and dimeric forms. To evaluate the prediction that LPL forms a homodimer in a 'head-to-tail' orientation, two inactive LPL mutants - a catalytic site mutant (S132T) and a substrate-recognition mutant (W390A/W393A/W394A) - were cotransfected into COS7 cells. Lipase activity could be recovered only when heterodimerization occurred in a head-to-tail orientation. After cotransfection, 50% of the wild-type lipase activity was recovered, indicating that lipase activity is determined by the interaction between the catalytic site on one subunit and the substrate-recognition site on the other.  相似文献   

13.
Lipoprotein lipase (LPL), a key enzyme in the metabolism of triglyceride-rich plasma lipoproteins, is a homodimer. Dissociation to monomers leads to loss of activity. Evidence that LPL dimers rapidly exchange subunits was demonstrated by fluorescence resonance energy transfer between lipase subunits labeled with Oregon Green and tetrametylrhodamine, respectively, and also by formation of heterodimers composed of radiolabeled and biotinylated lipase subunits captured on streptavidine-agarose. Compartmental modeling of the inactivation kinetics confirmed that rapid subunit exchange must occur. Studies of activity loss indicated the existence of a monomer that can form catalytically active dimers, but this intermediate state has not been possible to isolate and remains hypothetical. Differences in solution properties and conformation between the stable but catalytically inactive monomeric form of LPL and the active dimers were studied by static light scattering, intrinsic fluorescence, and probing with 4,4'-dianilino-1,1'-binaphtyl-5,5'-disulfonic acid and acrylamide. The catalytically inactive monomer appeared to have a more flexible and exposed structure than the dimers and to be more prone to aggregation. By limited proteolysis the conformational changes accompanying dissociation of the dimers to inactive monomers were localized mainly to the central part of the subunit, probably corresponding to the region for subunit interaction.  相似文献   

14.
Recombinant plasminogen-activator-inhibitor type 1 (PAI-1) purified in an active form from Escherichia coli and eucaryotic cells was found to contain a mixture of three functionally distinct forms: an active form that forms complexes with plasminogen activators (PAs), an inactive (latent) form that remains intact after incubation with PAs, and a substrate-like form which is easily cleaved by PAs. Since active PAI-1 purified from bacteria (rpPAI-1) contains only trace amounts of the inactive latent and the substrate-like forms, this material was used to study the effect of sodium dodecyl sulphate (SDS) on the structure and function of active PAI-1. After treatment with 0.01% SDS, active rpPAI-1 was converted to an inactive form that did not form complexes with PAs, but exhibited characteristics similar to those of latent PAI-1. After treatment with 0.1% SDS, PAI-1 lost its inhibitory activity and was cleaved as a substrate in the reactive center. Circular dichroism spectral analysis reveals that SDS changed the conformation of PAI-1 dramatically, mainly by increasing its alpha-helical content.  相似文献   

15.
Highly active lipase and protease complexes were prepared by non-covalent modification with stearic acid. The protein content and yield of the modified enzyme complexes depended on the enzymes' source. The increase in the transesterification activity of the modified enzymes was 15 fold for Candida rugosa lipase and porcine pancreatic lipase, with preservation of the enantioselectivity. Pseudomonas sp. lipase which showed no activity in its crude form, exhibited an activity of 38 mol/h·mg protein in the modified form. © Rapid Science Ltd. 1998  相似文献   

16.
F Faustinella  L C Smith  L Chan 《Biochemistry》1992,31(32):7219-7223
Lipoprotein lipase (LPL), hepatic lipase, and pancreatic lipase show high sequence homology to one another. The crystal structure of pancreatic lipase suggests that it contains a trypsin-like Asp-His-Ser catalytic triad at the active center, which is shielded by a disulfide bridge-bounded surface loop that must be repositioned before the substrate can gain access to the catalytic residues. By sequence alignment, the homologous catalytic triad in LPL corresponds to Asp156-His241-Ser132, absolutely conserved residues, and the homologous surface loop to residues 217-238, a poorly conserved region. To verify these assignments, we expressed in vitro wild-type LPL and mutant LPLs having single amino acid mutations involving residue Asp156 (to His, Ser, Asn, Ala, Glu, or Gly), His241 (to Asn, Ala, Arg, Gln, or Trp), or Ser132 (to Gly, Ala, Thu, or Asp) individually. All 15 mutant LPLs were totally devoid of enzyme activity, while wild-type LPL and other mutant LPLs containing substitutions in other positions were fully active. We further replaced the 22-residue LPL loop which shields the catalytic center either partially (replacing 6 of 22 residues) or completely with the corresponding hepatic lipase loop. The partial loop-replacement chimeric LPL was found to be fully active, and the complete loop-replacement mutant had approximately 60% activity, although the primary sequence of the hepatic lipase loop is quite different. In contrast, replacement with the pancreatic lipase loop completely inactivated the enzyme. Our results are consistent with Asp156-His241-Ser132 being the catalytic triad in lipoprotein lipase.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
J J Hogan  H F Noller 《Biochemistry》1978,17(4):587-593
We have studied the topography of 16S RNA in the inactive form of the 30S ribosomal subunit (Ginsburg, I., et al. (1973) J. Mol. Biol. 79, 481), using the guanine-specific reagent kethoxal. Oligonucleotides surrounding reactive guanine residues were isolated and quantitated by means of diagonal electrophoresis and sequenced. Comparison of these results with experiments on active or reactivated subunits reveals the following: (1) Most of the sites which are reactive in active 30S subunits are much more reactive (average 13-fold) in inactive subunits. Upon reactivation, these sites return to a less reactive state. Thus, a reversible increase in accessibility of specific 16S RNA sites parallels the reversible loss of protein synthesis activity of 30S subunits. (2) The number of kethoxal-reactive sites in inactive subunits is about twice that of active subunits. The nucleotide sequences and locations of the additional accessible sites in inactive subunits have been determined. (3) Sites that can be located in the 16S RNA sequence are distributed throughout the RNA chain in inactive subunits, in contrast to the clustering observed in active subunits. (4) The sites of kethoxal substitution are single stranded. Yet, of the 30 sites that can be located, 23 were predicted to be base paired in the proposed secondary structure model for 16S RNA (Ehresmann, C., et al. (1975), Nucleic Acids Res. 2, 265).  相似文献   

18.
The effect of castanospermine (CSTP), an inhibitor of glucosidase I, on processing, activity, and secretion of lipoprotein lipase was studied in 3T3-L1 adipocytes. Processing was analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) of endoglycosidase H (endo H)-digested subunits of lipoprotein lipase from cells incubated 1-2 h with [35S]methionine. Lipoprotein lipase in untreated cells consisted of two groups of subunits, M(r) = 55,000-58,000 and M(r) = 53,000-55,000. The heavier subunits were endo H-resistant, whereas the others were either totally or partially endo H-sensitive. The lipase secreted by untreated cells contained primarily endo H-resistant subunits. Immunofluorescent studies showed that lipoprotein lipase accumulated in Golgi in untreated cells. CSTP, 100 micrograms/ml for 18 h, decreased intracellular lipase activity by 80% and decreased secretion of lipase activity by 91%. Most of the lipase subunits in CSTP-treated cells were totally endo H-sensitive with M(r) = 57,000, some were partially endo H-sensitive, and a trace was endo-H resistant. Totally endo H-sensitive subunits in CSTP-treated cells had a M(r) 2,000-4,000 larger than that in untreated cells, indicating impaired trimming of sugar residues from oligosaccharide chains of the lipase in CSTP-treated cells. The small amount of lipase secreted by CSTP-treated cells consisted primarily of partially endo H-sensitive subunits, with one sensitive and one resistant chain per subunit. Immunofluorescent studies showed that lipoprotein lipase was excluded from Golgi in CSTP-treated cells.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
An intersubunit interactions study related to the active site has been performed on the wild-type cytidine deaminase (CDA) and on the mutant enzyme F137W/W113F. F137 is the homologous to the Bacillus subtilis CDA F125 involved in the subunit interactions. In the presence of SDS, wild-type human CDA dissociates into enzymatically inactive monomers without intermediate forms via a non-cooperative transition. Extensive dialysis or dilution of the inactivated monomers restores completely the activity. Circular dichroism measurements show that the secondary/tertiary structure organization of each subunit is unaffected by the SDS concentration, while the mutation Phe/Trp causes weakening in quaternary structure. The presence of the strong human CDA competitive inhibitor 5-fluorozebularine disfavours dissociation of the tetramer into subunits in the wild-type CDA, but not in mutant enzyme F137W/W113F. The absence of tyrosine fluorescence and the much higher quantum yield of the double mutant protein spectrum suggest the occurrence of an energy transfer effect between the protein subunits. This assumption is confirmed by the crystallographic studies on B.subtilis in which it is shown that three different subunits concur with the formation of each of the four active sites and that F125, homologous to the human CDA F137, is located at the interface between two different subunits contributing to the formation of active site.  相似文献   

20.
In the present study, porcine pancreatic lipase, rabbit gastric lipase, and human gastric lipase stereospecificity toward chemically alike, but sterically nonequivalent ester groups within one single triglyceride molecule was investigated. Lipolysis reactions were carried out on synthetic trioctanoin or triolein, which are homogenous, prochiral triglycerides, chosen as models for physiological lipase substrates. Diglyceride mixtures resulting from lipolysis were derivatized with optically active R-(+)-1-phenylethylisocyanate, to give diastereomeric carbamate mixtures, which were further separated by high performance liquid chromatography. Resolution of diastereomeric carbamates gave enantiomeric excess values, which reflect the lipases stereobias and clearly demonstrate the existence of a stereopreference by both gastric lipases for the sn-3 position. The stereoselectivity of human and rabbit gastric lipases, expressed as the enantiomeric excess percentage, was 54% and 70% for trioctanoin and 74% and 47% for triolein, respectively. The corresponding values with porcine pancreatic lipase were 3% in the case of trioctanoin and 8% in that of triolein. It is worth noting that rabbit gastric lipase, unlike human gastric lipase, became more stereoselective for the triglyceride with shorter acyl chains (trioctanoin). This is one of the most striking catalytic differences observed between these two gastric lipases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号