首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Biologically active bovine 125I-thyrotropin preparations have been prepared, characterized, and used to evaluate the optimal conditions for thyrotropin binding to bovine thyroid plasma membranes in vitro. Binding of 125I-TSH has a pH optimum around 6.0 and is sensitive to the choice and concentration of buffer. Binding is inhibited by salts, especially those containing magnesium and calcium ions; magnesium concentrations optimal for adenylate cyclase assays (2 to 5 mM) result in 85 to 98% inhibition of binding. Binding is temperature sensitive. At 37 degrees binding has its highest initial level; however, instability of the membrane at this temperature causes a rapid loss of binding activity. Binding at 0 degrees is optimal in 30 min and at the same level as initial binding at 37 degrees; since there is no decrease in binding activity, it has been chosen as the optimal temperature. Thyrotropin, luteinizing hormone, the beta subunit of thyrotropin, and the alpha subunit of thyrotropin have relative binding affinities for the thyrotropin receptors of 100, 10, 2, and less than 0.5, respectively. In all of these characteristics, 125I-thyrotropin at 1.5 x 10(-5) M concentrations has the same properties of binding to bovine plasma membranes as do [3H]thyrotropin preparations which have been previously characterized (Amir, S.M., Carraway, T.F., Jr., Kohn, L.D., and Winand, R.V. (1973) J. Biol. Chem. 248, 4092-4100) and used to study binding at 5 x 10(-6) M concentrations. 125I-TSH binding as a function of hormone concentration results in curved Scatchard plots; however, Hill plots of these same binding data are linear and have a slope of 0.65. Taken together, these data suggest that the heterogeneity in thyrotropin binding constants which is evident in the Scatchard plot reflects a negatively cooperative relationship among the thyrotropin receptor sites, i.e. decreased hormonal affinity as hormone concentrations increase. Adenylate cyclase studies yield kinetic plots which also exhibit negative cooperativity; corrections for thyrotropin bound under the adverse binding conditions of the adenylate cyclase assays suggest that Km values for thyrotropin in this enzymatic assay are compatible with binding constants measured by the 125I-thyrotropin preparations. Tryptic digestion destroys binding activity on the thyroid plasma membrane but releases specific thyrotropin receptor activity into the supernatant phase. Chromatography on Sephadex G-100 indicates that this solubilized receptor fragment has a molecular weight between 15,000 and 30,000.  相似文献   

2.
Biologically active preparations of 125I-thyrotropin, [3H]thyrotropin, and the [3H]exophthalmogenic factor derived from thyrotropin by partial pepsin digestion have been used to study the binding properties of the thyrotropin receptor on guinea pig retro-orbital tissue plasma membranes. In regard to the optimal conditions of binding, pH, buffer, salt concentrations, and temperature, these properties are the same as those described in any accompanying report concerning thyrotropin binding to bovine thyroid plasma membranes (Tate, R.L., Schwartz, H.I., Holmes, J.M., Kohn, L.D., and Winand, R.J. (1975) J. Biol. Chem. 250, 6509-6515). In addition, thyrotropin receptors on the retro-orbital tissue plasma membranes are similar to thyrotropin receptors on bovine thyroid plasma membranes in their apparent negative cooperativity and in their relative affinities for luteinizing hormone, the beta subunit of thyrotropin, and the alpha subunit of thyrotropin. In contrast, gamma-globulin from patients with malignant exophthalmos enhances binding when added to incubation mixtures containing the retro-orbital tissue plasma membranes but not when added to those containing thyroid plasma membranes. Normal gamma-globulin and gamma-globulin from Graves' disease patients without exophthalmos do not have this property. The gamma-globulin itself does not bind to the membrane except in the presence of thyrotropin or its exophthalmogenic factor derivative. Tryptic digestion of the retro-orbital tissue membranes releases specific thyrotropin and exophthalmogenic factor binding activity into the supernatant phase. Chromatography on Sephadex G-100 indicates that this trypsin-released receptor activity has a molecular weight of 75,000 or greater, rather than 15,000 to 30,000 for the trypsin-released receptor activity from bovine thyroid membranes (Tate, R.L., Schwartz, H.I., Holmes, J.M., Kohn, L.D., and Winand, R.J. (1975) J. Biol. Chem. 250, 6509-6515).  相似文献   

3.
Retro-orbital tissue membranes have been shown to have adenylate cyclase activity which can be stimulated by thyrotropin and by an exophthalmogenic factor derived from the thyrotropin molecule by partial pepsin digestion. This stimulable activity is maximal after 15 min and is optimal in the presence of 3 mM magnesium and 1.5 mM ATP. Calcium salts are exquisitely inhibitory to the hormonal stimulation; sodium, lithium, and ammonium salts are significantly less inhibitory. Thyrotropin and the exophthalmogenic factor induce similar maximal levels of stimulation but a 4- to 5-fold higher concentration of exophthalmogenic factor is required to achieve this level. Fluoride stimulates adenylate cyclase activity 2- to 3-fold higher than either thyrotropin or the exophthalmogenic factor; thyrotropin, luteinizing hormone, the beta subunit of thyrotropin, and the alpha subunit of thyrotropin have relative activities for stimulation of cyclase activity of 100:2:2 less than 0.5. Several other polypeptide and glycoprotein hormones have no effect. The gamma-globulin from patients with malignant exophthalmos has no significant effect on cyclase activity either alone or in the presence of maximal levels of thyrotropin or the exophthalmogenic factor; this gamma-globulin does, however, stimulate cyclase activity at submaximal hormone levels. Trypsin not only destroys the hormone-stimulable adenylate cyclase activity on retro-orbital tissue plasma membranes, but also destroys it on the 15,000 to 30,000 molecular weight receptor fragment released from the membranes by the tryptic action.  相似文献   

4.
The two components of thyroid plasma membranes known to interact with thyrotropin, i.e., a glycoprotein with specific thyrotropin binding activity and the gangliosides of the thyroid membranes, are shown to segregate differently when membranes are solubilized with lithium diiodosalicylate. Individually examined, the interaction of each component with thyrotropin exhibits a different sensitivity to salts. The data suggest that the thyrotropin receptor on the thyroid membrane is a complex which is composed of both glycoprotein and ganglioside components and that its properties are derived from each component.  相似文献   

5.
The thyrotropin receptor is proposed to contain both a glycoprotein and a ganglioside component. Monoclonal antibodies have been developed against soluble thyroid TSH receptor preparations and using Graves' lymphocytes. These show that initial recognition of thyrotropin requires the glycoprotein component, but that monoclonal antibodies to this component block thyrotropin function (blocking antibodies) rather than mimic thyrotropin. Monoclonal antibodies which stimulate thyroid activity in cultured cell systems (cAMP increase) or mouse bioassays, all interact with gangliosides. Using monoclonal antibodies to the glycoprotein component of the thyrotropin receptor, we show that two protein bands, molecular weights 18,000-23,000 and 50,000-55,000, are precipitated from detergent-solubilized preparations. Using a crosslinking procedure with 125I-labeled thyrotropin, we show that thyrotropin binding is related to the disappearance of the 18,000-23,000 molecular weight band on sodium dodecylsulfate gels and the appearance of a 30,000-33,000 molecular weight thyrotropin-membrane component complex. Higher molecular weight thyrotropin-membrane complexes of 75,000-80,000 and 250,000 are visualized when binding studies are performed at pH 7.4 in physiologic medium; larger amounts of the 30,000-33,000 complex are evident at pH 6.0 in a low salt medium. It is thus proposed that the glycoprotein component of the thyrotropin receptor is composed of two subunits with apparent molecular weights of 18,000-23,000 and 50,000-55,000; that the 18,000-23,000 subunit interacts with thyrotropin; and that different receptor subunits can exist depending on in vitro binding conditions. Using monoclonal-stimulating antibodies or natural autoimmune IgG preparations from patients' sera, we show that stimulating antibodies exhibit species-specific binding to human thyroid ganglioside preparations. Individual components or determinants of the thyrotropin receptor structure with specific autoimmune immunoglobulins.  相似文献   

6.
Rat liver nuclear thyroid hormone receptor was subjected to limited trypsin digestion, and the tryptic fragment of the 3,5,3'-triiodo-L-thyronine (T3)-receptor complex was characterized. Rat liver nuclear thyroid hormone receptor is an asymmetrical protein with Stokes radius of 34 A, sedimentation coefficient of 3.4 S, and molecular weight of 49,000. A globular T3-receptor complex with Stokes radius of 22 A, sedimentation coefficient of 2.8 S, and molecular weight of 26,000 was obtained by tryptic digestion. This fragment had no DNA binding activity, whereas undigested receptor showed significant DNA binding activity. Addition of undigested receptor to the tryptic fragment did not restore DNA binding activity of digested receptor, nor did mixing inhibit DNA binding activity of undigested receptor complex. Undigested receptor bound to core histones, and this activity was stronger than with other proteins tested (H1 histone, cytochrome c, and ovalbumin). The tryptic fragment of receptor maintained core histone binding activity comparable to that of undigested receptor. The tryptic fragment had affinity for T3 comparable to undigested receptor as assessed by Scatchard analysis and the same rate for dissociation of [125I]T3 from receptor. The tryptic fragment of the T3-receptor complex was more stable than undigested receptor at 43 degrees C. Digestion of receptor unoccupied by T3 caused a significantly larger loss of T3 binding capacity than did digestion of T3-occupied receptor, suggesting a protective effect of T3 on a second trypsin-sensitive site on the receptor, which, when cut, destroys T3 binding activity.  相似文献   

7.
Dog, human, and bovine thyroid cells in culture have been shown to develop follicle-like structures when cells are cultured in conditions of confluency and when cells are incubated in the presence of bovine thyrotropin or N6,O2'-dibutyryl cyclic adenosine 3':5'-monophosphate during the first 24 to 48 hours after trypsinization. If thyrotropin is added 48 hours after trypsinization, these cells do not form follicle-like structures but remain as a monolayer culture. Although thyroid cells which grow as a monolayer have a thyrotropin receptor on their plasma membranes with the same in vitro binding properties as the thyrotropin receptor on the plasma membranes of the follicle-forming thyroid cells, there is a 1- to 2-fold greater number of receptors per mg of membrane protein when follicle-forming and monolayer cultures are compared...  相似文献   

8.
Glucagon receptors have been identified and characterized in intermediate (Gi) and heavy (Gh) Golgi fractions from rat liver. At saturation, plasma membranes bound 3500 fmol of hormone/mg of membrane protein, while Gi and Gh bound 24 and 60 fmol of 125I-glucagon/mg of protein, respectively. Half-maximal saturation of binding to plasma membranes, Gi, and Gh occurred at approximately 4, 10, and 20 nM 125I-glucagon, respectively. Trichloroacetic acid precipitation of intact, but not degraded, glucagon was used to correct binding isotherms for hormone degradation. After such correction, half-maximal saturation of binding to plasma membranes, Gi, and Gh was observed in the presence of approximately 2, 7, and 14 nM hormone, respectively. After 90 min of dissociation in the absence of guanosine 5'-triphosphate (GTP), 86% of 125I-glucagon remained bound to plasma membranes, whereas only 42% remained bound to Golgi membranes. GTP significantly increased the fraction of 125I-glucagon released from plasma membranes but only slightly augmented the dissociation of hormone from Golgi fractions. 125I-Glucagon/receptor complexes solubilized from plasma membranes fractionated by gel filtration as high molecular weight (Kav = 0.16), GTP-sensitive complexes and lower molecular weight (Kav = 0.46), GTP-insensitive complexes. 125I-Glucagon complexes solubilized from Golgi membranes fractionated almost exclusively as the lower molecular weight species. The lower affinity of Golgi than plasma membrane receptors for hormone, the ability of glucagon to stimulate plasma membrane, but not Golgi membrane, adenylyl cyclase, and the near absence of high molecular weight, GTP-sensitive complexes in solubilized Golgi membranes demonstrate that plasma membrane contamination of Golgi fractions cannot account for the 125I-glucagon binding.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
Thyroglobulin binds to isolated thyroid plasma membrane preparations. Binding is pH- and temperature-dependent with 10-fold better binding at pH 5.0 and 37 degrees C than at 0 degrees C and pH 6.0 through pH 7.5. Binding is, however, maximal in 90 min at all pH values and temperatures examined. Although salts can inhibit or enhance thyroglobulin binding depending on the temperature or pH, conditions approaching those of the physiological state are not inhibitory; physiological conditions do inhibit thyrotropin binding to the same membrane preparations. 125I-Labeled thyroglobulin binding is poorly reversed by unlabeled thyroglobulin at all pH values and temperatures studied; excess unlabeled thyroglobulin can, however, readily prevent binding. At pH values greater than 6.0 and at 0 degrees C, the iodine content of thyroglobulin can affect binding, and the 27 S thyroid iodoprotein is relatively ineffective in preventing the binding of the 19 S species. At pH 5.0 and 37 degrees C, there is no difference in binding of highly and less iodinated thyroglobulin, and the 27 S thyroglobulin iodoprotein is effective in preventing 19 S thyroglobulin binding. The complex nature of these results is interpreted in the light of additional data which show (i) that the thyroid membrane recognizes asialothyroglobulin and (ii) that at pH 5.0 and 37 degrees C a membrane-associated neuraminidase is activated which removes sialic acid from thyroglobulin. Vibrio cholerae neuraminidase can substitute for the endogenous neuraminidase. The receptor on thyroid membranes for asialothyroglobulin is similar to the asialoglycoprotein receptor on liver membranes (Morell, A.G., Gregoriadis, G., Scheinberg, I.H., Hickman, J., and Ashwell, G. (1971) J. Biol. Chem. 246, 1461-1467) in that sialic acid on the receptor is critical for receptor expression. It is distinct from the liver asialoglycoprotein receptor in its binding specificity and in its sensitivity to different bacterial and mammalian neuraminidase preparations. Relationships between thyroglobulin and thyrotropin receptors on thyroid membranes are explored, and the functional role of the thyroglobulin receptor is discussed.  相似文献   

10.
The binding of 125I-labelled human growth hormone (hGH) to a purified plasma membrane preparation from the liver of pregnant rabbit, and to receptors solubilized from this fraction with Triton X-100, was dependent on time, temperature, the cations used and the receptor concentration. Solubilization did not affect the binding properties of the receptors at low concentrations of Triton X-100. Some somatogenic hormones, such as bovine GH, and some lactogenic hormones, such as ovine prolactin, displaced 125I-labelled hGH from purified plasma membranes and solubilized receptor preparations, but GHs and prolactins from various other species were rather ineffective. The results indicate that although there are binding sites for hGH in these pregnant rabbit liver membranes, few of these are specifically somatogenic or lactogenic. The binding properties of the purified plasma membranes are similar to those of a microsomal preparation studied previously, suggesting that the complex nature of the binding of hGH is not due to the heterogeneity of cellular membranes used to study binding, but is a property of the receptors associated with plasma membranes.  相似文献   

11.
Liver plasma membranes bind insulin in a complex fashion via three prominent disulfide-linked insulin receptor structures of 360K, 300K, and 260K molecular weight. To determine if the complex binding is explained by different binding affinities among the different structures, 125I-insulin was specifically cross-linked to the binding sites and the amount of radiolabeled insulin was determined after SDS-gel electrophoresis. The insulin binding characteristics of each structure were similar to the binding properties of the intact membrane. The Scatchard plot for each structure was curvilinear and the Kd values for the high and low affinity components were similar to the membrane values. Thus, the curvilinear Scatchard plot of insulin binding to liver membranes is also a feature of each receptor structure and is not a function of different receptors with different binding properties.  相似文献   

12.
Treatment of Swiss mouse 3T3 cells and human epidermoid carcinoma A431 cells with protamine at 37 degrees C increased the 125I-epidermal growth factor (EGF) binding activity at 4 degrees C. The effect of protamine on the increase of 125I-EGF binding activity appeared to be time, temperature, and dose dependent. This up-modulation of 125I-EGF binding by protamine correlated with protamine enhancement of EGF-stimulated mitogenesis, with respect to the magnitude of the effect and the dose response curves. Scatchard plot analyses indicated that protamine induced an increase in numbers of both high and low affinity EGF receptors without affecting their affinities. Protamine also increased functionally active EGF receptors in plasma membranes and solubilized membranes. This was evidenced by Scatchard plot analyses and by a protamine-induced increase of 125I-EGF-EGF receptor complex and an increase in EGF-stimulated phosphorylation of the EGF receptor. Combined with column chromatography of the solubilized EGF receptor on protamine-agarose gel, these results suggest that protamine may increase the EGF receptor number by directly activating cryptic EGF receptors in the plasma membrane.  相似文献   

13.
Abstract: Nerve growth factor (NGF) initiates a pleiotypic response in numerous tissues derived from the neural crest by binding to specific plasma membrane receptors. In sympathetic ganglia this receptor has been characterized as a highly asymmetric, minimally hydrophobic, intrinsic membrane protein with a molecular weight of 135,000 (Costrini et al., 1979b). To further characterize this moiety we assessed the effects of lectins on 125I-NGF specific binding to preparations of particulate and nonionic detergent-extracted micro-somal receptors of rabbit superior cervical ganglia (SCG). Concanavalin A (Con A) and wheat germ agglutinin (WGA), but not soybean agglutinin or Ulex europaeus I, induced a concentration-related, carbohydrate-specific decrease in 125T-NGF binding. Following Con A exposure, 125I-NGF specific binding to particulate SCG receptors was maximally reduced to 23% of control values. WGA similarly reduced NGF binding to particulate microsomal receptors to 37% of control values. Scatchard analysis of growth factor binding following Con A exposure indicated that this lectin effect was principally due to a sixfold reduction in maximum receptor affinity. Lectin-associated impairment of NGF binding was also demonstrated by using a Triton X-100 solubilized receptor preparation. These results provide evidence that the high-affinity-state NGF receptor of SCG is a glycoprotein containing N -acetylglucosamine and α-D-mannopyranoside residues. These residues are probably located in close proximity to the growth factor binding region of the NGF receptor.  相似文献   

14.
Insulin receptors, photoaffinity-labeled in rat liver and human placenta membranes, and receptor purified from rat liver membranes, were treated with proteolytic and glycosidic enzymes and analyzed by SDS-polyacrylamide gel electrophoresis. The protease fragments from the purified receptor were similar to those from the photoaffinity-labeled receptors, if these were solubilized prior to digestion. However, the intact photoaffinity-labeled membranes were less sensitive to proteases, and different fragments were produced. Thus, solubilization exposes sites very sensitive to proteolysis. The labeled tryptic fragments of placenta membranes remained membrane-bound. Neuraminidase altered the mobility of the intact receptor and of several of the large tryptic fragments, indicating that these contain sialic acid and are probably exposed on the outer surface of the membrane.  相似文献   

15.
Prior studies have detected biochemical and immunological differences between insulin receptors in plasma membranes and isolated nuclei. To further investigate these receptors, they were solubilized in Triton X-100 and partially purified by wheat germ agglutinin-agarose chromatography. In these preparations, the nuclear and plasma membrane receptors had very similar pH optima (pH 8.0) and reactivities to a group of polyclonal antireceptor antibodies. Further, both membrane preparations had identical binding activities when labeled insulin was competed for by unlabeled insulin (50% inhibition at 800 pM). Next, nuclear and plasma membranes were solubilized and purified to homogeneity by wheat germ agglutinin-agarose and insulin-agarose chromatography. In both receptors, labeled insulin was covalently cross-linked to a protein of 130 kilodaltons representing the insulin receptor alpha subunit. When preparations of both receptors were incubated with insulin and then adenosine 5'-[gamma-32P]triphosphate, a protein of 95 kilodaltons representing the insulin receptor beta subunit was phosphorylated in a dose-dependent manner. These studies indicate, therefore, that solubilized plasma membrane and nuclear insulin receptors have similar structures and biochemical properties, and they suggest that they are the same (or very similar) proteins.  相似文献   

16.
Bovine thyroid membranes possess both ADP ribosyltransferase and NAD glycohydrolase activities with the same Km values for NAD and the same pH optima. In intact membranes, the ADP ribosyltransferase is limited in its extent by the amount of available membrane acceptor which can be ADP-ribosylated; in membranes solubilized with lithium diiodosalicylate, an artificial acceptor, L-arginine methyl ester, can be substituted to eliminate this limitation. The product of the ADP ribosyltransferase is a mono-ADP-ribosylated acceptor whether the intact or solubilized membrane provides the enzyme activity and whether membrane or exogenous acceptor, L-arginine methyl ester, is utilized. The intact membranes and the solubilized preparation also have an enzyme activity which can release AMP from the mono-ADP-ribosylated acceptor whether formed by the action of the membrane ADP ribosyltransferase or the A promoter of cholera toxin. The NAD glycohydrolase activity appears to represent the half-reaction of the ADP ribosyltransferase, i.e. an activity measurable substituting water for a membrane acceptor or L-arginine methyl ester. Membranes from functional rat thyroid cells in culture, i.e. cells chronically stimulated by thyrotropin and unresponsive to further additions of thyrotropin, have low ADP-ribosylation but high NAD glycohydrolase activities. In contrast, membranes from nonfunctional rat thyroid cells, i.e. cells unresponsive to thyrotropin, have high ADP-ribosylation and low NAD glycohydrolase activities. NAD hydrolysis by the NAD glycohydrolase activity cannot account for the low ADP-ribosylation activity in membranes from the functioning cells, and its low level of ADP-ribosylation can be eliminated by solubilizing the membranes and substituting an artificial acceptor, L-arginine methyl ester. The ADP ribosyltransferase activity of rat thyroid cell membrane preparations can be enhanced by thyrotropin in a dose-dependent manner but not by insulin, glucagon, hydrocortisone, adrenocorticotropin, or its glycoprotein hormone analog, human chorionic gonadotropin. It is thus suggested (i) that, in analogy to cholera toxin, thyrotropin-stimulated ADP-ribosylation may be important in the regulation of the adenylate cyclase response and (ii) that the level of membrane acceptor available for ADP-ribosylation may relate both to a stable "'activated" state of the adenylate cyclase system in cells chronically stimulated with thyrotropin and/or to a desensitized state with regard to a failure of more thyrotropin to elicit additional functional responses.  相似文献   

17.
Triiodothyronine, reverse triiodothyronine and thyroxine were found to inhibit 125I labelled thyrotropin binding to human thyroid plasma membranes in vitro. Both the thyrotropin binding and the effect of the above iodoamino-acids on this binding were pH, temperature and time dependent, 50% inhibition of thyrotropin binding was observed at 2×10?7M concentration of reverse triiodothyronine or thyroxine and at 1.1 × 10?6M concentration of triiodothyronine. The kinetic studies of thyrotropin binding revealed that the maximal capacity of receptor sites for the pituitary hormone is unaffected by the presence of thyroid hormones. On the other hand the association and dissociation constants for thyrotropin binding changed when iodoaminoacids were present in the incubation medium /Ka 8.13 × 107M?1 vs 1.6 × 108M?1 and Kd 1.14 × 10?8M vs 4.55 × 10?9M respectively, depending on the pH/. The double reciprocal plots showed competitive mechanism of inhibition. The present study suggest that triiodothyronine, reverse triiodothyronine and thyroxine are able to modify the thyrotropin binding to membrane receptors.  相似文献   

18.
Solubilization and characterization of CCK receptors from mouse pancreas   总被引:3,自引:0,他引:3  
To study the characteristics of the CCK receptor, plasma membranes were prepared from mouse pancreatic acini, and CCK receptors solubilized with 1% digitonin. To measure hormone binding, the solubilized receptors were incubated with 125I-CCK at 4 degrees C and the hormone-receptor complex was precipitated with 10% polyethylene glycol. Specific 125I-CCK binding by the solubilized CCK receptor was compared to that by the plasma membrane-bound CCK receptor. Both the solubilized and the membrane-bound receptor displayed optimal binding at an acidic pH (between 6.0 and 7.0) and showed a similar sensitivity to monovalent and divalent cations. The solubilized receptors preserved their relative specificity for CCK molecules: CCK-8 greater than CCK-33 greater than desulfated CCK-8 greater than CCK-4. However, the soluble CCK receptor had a lower binding affinity than plasma membrane-bound receptor. Solubilized receptors preserved their relative specificity for inhibitors of CCK binding and action: dibutyryl cyclic GMP greater than N-CBZ-tryptophan greater than proglumide. Solubilized receptors had affinities for these antagonists that were similar to receptors on intact plasma membranes. These data indicate, therefore, that the specific binding properties of the CCK receptor are inherent to the solubilized glycoprotein molecules.  相似文献   

19.
FRTL-5 rat thyroid cells were either surface-labeled with 125I or biosynthetically labeled with [3H]N-acetylglucosamine, solubilized by lithium diiodosalicylate and immunoprecipitated after sequential exposure to bovine thyrotropin and anti-bovine thyrotropin. Autoradiography of polyacrylamide gels run under denaturing conditions and in the presence of a reducing agent revealed two prominent bands with approximate molecular weights of 66-70 kDa and 47 kDa. Immunoprecipitation of the same radiolabeled and solubilized membrane preparations with a Graves' disease IgG having thyroid stimulating but no thyrotropin-binding inhibiting activity revealed only one major band, migrating near the 47 kDa component reactive with thyrotropin. No bands were immunoprecipitated in control incubations using normal human IgG or substituting radiolabeled, solubilized membranes from a rat thyroid cell line with no thyrotropin receptor activity. Thin layer chromatography of Folch extracts of the [3H]-N-acetylglucosamine-labeled immunoprecipitates obtained by either procedure indicated that a specific thyroid ganglioside was coprecipitated with the immunoprecipitated proteins in both cases.  相似文献   

20.
Monoiodotyrosine ([125I]ChTX) binds with high affinity to a single class of receptors present in bovine aortic smooth muscle sarcolemmal membranes that are functionally associated with the high-conductance Ca(2+)-activated K+ channel [maxi-K channel; Vázquez, J., et al. (1989) J. Biol. Chem. 265, 20902-20909]. Cross-linking experiments carried out with this preparation in the presence of [125I]ChTX and disuccinimidyl suberate indicate specific incorporation of radioactivity into a protein of Mr 35,000. The smooth muscle ChTX receptor can be solubilized in active form in the presence of selected detergents. Treatment of membranes with digitonin releases about 50% of the ChTX binding sites. The solubilized receptor retains the same biochemical and pharmacological properties that are characteristic of toxin interaction with membrane-bound receptors. The solubilized receptor binds specifically to wheat germ agglutinin-Sepharose resin, suggesting that it is a glycoprotein. Functional ChTX binding sites can also be solubilized in 3-[(3-cholamidopropyl)dimethylamino]-1-propanesulfonate (CHAPS). Sucrose density gradient centrifugation of either digitonin or CHAPS extracts indicates that the ChTX receptor has a high apparent sedimentation coefficient (s20,w = 23 and 18 S, respectively). Cross-linking experiments indicate that the appearance of the 35-kDa membrane protein correlates with ChTX binding activity after both wheat germ agglutinin-Sepharose and sucrose density gradient centrifugation steps. Given the high apparent sedimentation coefficient of the ChTX receptor, the 35-kDa membrane protein may be a subunit of a higher molecular weight complex which forms the maxi-K channel in smooth muscle sarcolemma.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号