首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Coulthard AB  Nolan N  Bell JB  Hilliker AJ 《Genetics》2005,170(4):1711-1721
Transvection is a phenomenon wherein gene expression is effected by the interaction of alleles in trans and often results in partial complementation between mutant alleles. Transvection is dependent upon somatic pairing between homologous chromosome regions and is a form of interallelic complementation that does not occur at the polypeptide level. In this study we demonstrated that transvection could occur at the vestigial (vg) locus by revealing that partial complementation between two vg mutant alleles could be disrupted by changing the genomic location of the alleles through chromosome rearrangement. If chromosome rearrangements affect transvection by disrupting somatic pairing, then combining chromosome rearrangements that restore somatic pairing should restore transvection. We were able to restore partial complementation in numerous rearrangement trans-heterozygotes, thus providing substantial evidence that the observed complementation at vg results from a transvection effect. Cytological analyses revealed this transvection effect to have a large proximal critical region, a feature common to other transvection effects. In the Drosophila interphase nucleus, paired chromosome arms are separated into distinct, nonoverlapping domains. We propose that if the relative position of each arm in the nucleus is determined by the centromere as a relic of chromosome positions after the last mitotic division, then a locus will be displaced to a different territory of the interphase nucleus relative to its nonrearranged homolog by any rearrangement that links that locus to a different centromere. This physical displacement in the nucleus hinders transvection by disrupting the somatic pairing of homologous chromosomes and gives rise to proximal critical regions.  相似文献   

2.
Three gene systems have been shown to exhibit proximity-dependent phenotypes in Drosophila melanogaster: bithorax (BX-C), decapentaplegic (DPP-C) and white (w). In structurally homozygous genotypes, specific allelic combinations at these loci exhibit one phenotype, while in certain rearrangement heterozygotes the same allelic combinations exhibit dramatically different phenotypes. These observations have led to the suggestion that, through the process of somatic chromosome pairing, such loci are brought into sufficient proximity to permit effective passage of molecular information between homologues; rearrangement heterozygosity would then displace the homologues relative to one another such that this trans-communication is obviated. The genetic properties of the proximity-dependent allelic complementation (termed transvection effects) at the BX-C and DPP-C, are quite similar. Chromosomal rearrangements which disrupt transvection possess a breakpoint in a particular segment of the chromosome arm bearing the transvection-sensitive gene (arm 2L for the DDP-C and 3R for the BX-C); this segment of each arm has been termed the critical region by Lewis (1954). As determined by cytogenetic analysis of transvection-disrupting rearrangements, the critical regions for the BX-C and DDP-C transvection effects extend proximally from these loci for several hundred polytene chromosome bands (Lewis 1954; Gelbart 1982). The interaction between the zeste and white loci appears to depend upon the proximity of the two w+ alleles. By use of insertional duplications, displacement of w+ homologues has been shown to interfere with the zeste-white interaction. In contrast to transvection at bithorax and decapentaplegic, however, only breakpoints in the immediate vicinity of the white locus can disrupt the zeste-white interaction (Gans 1953; Green 1967; Gelbart 1971; this report). In this report, we investigate the basis for the difference in the size of the BX-C and DPP-C critical regions from that of white. We test and eliminate the possibility that the difference is due to the presence near the white locus of a site which mediates somatic chromosome pairing. Rather, our evidence strongly suggests that the zeste-white interaction is, at the phenotypic level, much less sensitive to displacement of the homologous genes than is transvection at either the BX-C or DPP-C. We also show that many of the breakpoints in the vicinity of the white locus do not behave as if they are disrupting a critical region for somatic chromosome pairing. Given these results, we suggest that the zeste-white interaction and transvection are two different proximity-dependent phenomena.  相似文献   

3.
4.
R. Hopmann  D. Duncan    I. Duncan 《Genetics》1995,139(2):815-833
The Abdominal-B (Abd-B) gene of the bithorax complex (BX-C) of Drosophila controls the identities of the fifth through seventh abdominal segments and segments in the genitalia (more precisely, parasegments 10-14). Here we focus on iab-5, iab-6 and iab-7, regulatory regions of Abd-B that control expression in the fifth, sixth and seventh abdominal segments (parasegments 10-12). By analysis of partial BX-C deficiencies, we show that these regions are able to promote fifth and sixth abdominal segment identities in the absence of an Abd-B gene in cis. We establish that this ability does not result from cis-regulation of the adjacent abd-A or Ubx genes of the BX-C but rather occurs because the iab-5,6,7 region is able to interact with Abd-B in trans. We demonstrate that this interaction is proximity dependent and is, therefore, a case of what E. B. LEWIS has called transvection. Interactions of this type are presumably facilitated by the synapsis of homologues that occurs in somatic cells of Dipterans. Although transvection has been detected in a number of Drosophila genes, transvection of the iab-5,6,7 region is exceptional in two ways. First, interaction in trans with Abd-B does not require that homologues share homologous sequences within, or for some distance to either side of, the BX-C. This is the first case of transvection shown to be independent of local synapsis. A second unusual feature of iab-5,6,7 transvection is that it is remarkably difficult to disrupt by heterozygosity for chromosome rearrangements. The lack of requirement for local synapsis and the tenacity of trans-interaction argue that the iab-5,6,7 region can locate and interact with Abd-B over considerable distance. This is consistent with the normal role of iab-5,6,7, which must act over some 20-60 kb to influence its regulatory target in cis at the Abd-B promoter. Evidence is presented that trans-action of iab-5,6,7 requires, and may be mediated by, the region between distal iab-7 and Abd-B. Also, we show that iab-5,6,7 transvection is independent of the allelic state of zeste, a gene that influences several other cases of transvection. The long-range nature of interactions in trans between iab-5,6,7 and Abd-B suggests that similar interactions could operate effectively in organisms lacking extensive somatic pairing. Transvection may, therefore, be of more general significance than previously suspected.  相似文献   

5.
Transvection at the Eyes Absent Gene of Drosophila   总被引:5,自引:2,他引:3       下载免费PDF全文
W. M. Leiserson  N. M. Bonini    S. Benzer 《Genetics》1994,138(4):1171-1179
The Drosophila eyes absent (eya) gene is required for survival and differentiation of eye progenitor cells. Loss of gene function in the eye results in reduction or absence of the adult compound eye. Certain combinations of eya alleles undergo partial complementation, with dramatic restoration of eye size. This interaction is sensitive to the relative positions of the two alleles in the genome; rearrangements predicted to disrupt pairing of chromosomal homologs in the eya region disrupt complementation. Ten X-ray-induced rearrangements that suppress the interaction obey the same general rules as those tha disrupt transvection at the bithorax complex and the decapentaplegic gene. Moreover, like transvection in those cases, the interaction at eya depends on the presence of normal zeste function. The discovery of transvection at eya suggests that transvection interactions of this type may be more prevalent than generally thought.  相似文献   

6.
基因转应作用(transvection)是基因表达的一种方式,这种方式是由等位基因配对及其相互作用所介导的。基因转应作用的现象已在果蝇的多种基因中发现。这种作用可产生正负两种效应。而且,在其它物种中,也逐渐发现了类似的现象。例如,在植物中的基因沉默现象(genesilencing)以及在小鼠中的基因转激活作用(transactivation)等。因此,阐明基因转应作用的机理,将有助于了解基因表达调节及增强子调控活动的分子基础。本文应用果蝇yelow基因为模式来探讨基因转应作用的分子机制。前期研究表明,yelow基因转应作用发生于gypsy诱导的y2突变种和yelow亚等位基因(yh)之间。为了证实是否gypsy是基因转应作用所必需的DNA元件,我们鉴定了一种新的yelow突变种,称为y2374。y2374突变是一种基因表达的组织特异性改变,这一改变使y2374果蝇在翅和身体部位表皮着色呈突变型。通过遗传分析表明,y2374也可与yh(如y1#8)产生基因转应作用。y1#8是一种无效的yelow等位基因,它包含一个启动子和部分编码区序列的缺失。然而,当y2374与y1#8杂交后,其杂交后代的表现型可由y237  相似文献   

7.
8.
9.
10.
11.
Gohl D  Müller M  Pirrotta V  Affolter M  Schedl P 《Genetics》2008,178(1):127-143
Intra- and interchromosomal interactions have been implicated in a number of genetic phenomena in diverse organisms, suggesting that the higher-order structural organization of chromosomes in the nucleus can have a profound impact on gene regulation. In Drosophila, homologous chromosomes remain paired in somatic tissues, allowing for trans interactions between genes and regulatory elements on the two homologs. One consequence of homolog pairing is the phenomenon of transvection, in which regulatory elements on one homolog can affect the expression of a gene in trans. We report a new instance of transvection at the Drosophila apterous (ap) locus. Two different insertions of boundary elements in the ap regulatory region were identified. The boundaries are inserted between the ap wing enhancer and the ap promoter and have highly penetrant wing defects typical of mutants in ap. When crossed to an ap promoter deletion, both boundary inserts exhibit the interallelic complementation characteristic of transvection. To confirm that transvection occurs at ap, we generated a deletion of the ap wing enhancer by FRT-mediated recombination. When the wing-enhancer deletion is crossed to the ap promoter deletion, strong transvection is observed. Interestingly, the two boundary elements, which are inserted ~10 kb apart, fail to block enhancer action when they are present in trans to one another. We demonstrate that this is unlikely to be due to insulator bypass. The transvection effects described here may provide insight into the role that boundary element pairing plays in enhancer blocking both in cis and in trans.  相似文献   

12.
Structure and sequence of the Drosophila zeste gene.   总被引:20,自引:4,他引:16       下载免费PDF全文
The zeste gene of Drosophila affects the expression of other genes in a manner that depends on the homologous pairing of the chromosomes bearing the target gene. Zeste mediates transvection effects, the ability of one gene to control the expression of its homologous copy on another chromosome. We have determined the structure of the zeste gene and several mutants bearing partial deletions and the sequence of the z+, z1, zop6 and z11G3 alleles. The predicted zeste protein has an unusual structure including runs of Gln, Ala and alternating Gln Ala. Contrary to expectations the z1, zop6 and z11G3 mutations can each be attributed to single amino acid changes. The analysis of the mutants suggests that the zeste gene product is required for normal expression of at least some genes and we argue that za mutants may have residual function.  相似文献   

13.
14.
B cell Ag receptor editing is a process that can change kappa antigen recognition specificity of a B cell receptor through secondary gene rearrangements on the same allele. In this study we used a model mouse pre-B cell line (38B9) to examine factors that might affect allelic targeting of secondary rearrangements of the kappa locus. We isolated clones that showed both productive and nonproductive rearrangements of one kappa allele, while retaining the other kappa allele in the germline configuration (kappa(+)/kappa degrees or kappa(-)/kappa degrees ). In the absence of any selective pressures, subsequent rearrangement of the germline alleles occurred at the same frequency as secondary rearrangement of the productive or nonproductive rearranged alleles. Because 38B9 cells lack Ig heavy chains, we stably expressed mu heavy chain protein in 38B9 cells to determine whether heavy-light pairing might affect allelic targeting of secondary kappa rearrangements. Although the expression of heavy chain was found to both pair with and stabilize kappa protein in these cells, it had no effect on preferential targeting Vkappa-Jkappa receptor editing compared with rearrangement of a germline allele. These studies suggest that in the absence of selection to eliminate autoreactive Vkappa-Jkappa genes, there is no allelic preference for secondary rearrangement events in 38B9 cells.  相似文献   

15.
16.
Blumenstiel JP  Fu R  Theurkauf WE  Hawley RS 《Genetics》2008,180(3):1355-1365
Homolog pairing is indispensable for the proper segregation of chromosomes in meiosis but the mechanism by which homologs uniquely pair with each other is poorly understood. In Drosophila, somatic chromosomes also undergo full homolog pairing by an unknown mechanism. It has been recently demonstrated that both insulator function and somatic long-distance interactions between Polycomb response elements (PREs) are stabilized by the RNAi machinery in Drosophila. This suggests the possibility that long-distance pairing interactions between homologs, either during meiosis or in the soma, may be stabilized by a similar mechanism. To test this hypothesis, we have characterized meiotic and early somatic chromosome pairing of homologous chromosomes in flies that are mutant for various components of the RNAi machinery. Despite the identification of a novel role for the piRNA machinery in meiotic progression and synaptonemal complex (SC) assembly, we have found that the components of the RNAi machinery that mediate long-distance chromosomal interactions are dispensable for homologous chromosome pairing. Thus, there appears to be at least two mechanisms that bring homologous sequences together within the nucleus: those that act between dispersed homologous sequences and those that act to align and pair homologous chromosomes.  相似文献   

17.
Self-assembly is the autonomous organization of constituents into higher order structures or assemblages and is a fundamental mechanism in biological systems. There has been an unfounded idea that self-assembly may be used in the sensing and pairing of homologous chromosomes or chromatin, including meiotic chromosome pairing, polytene chromosome formation in Diptera and transvection. Recent studies proved that double-stranded DNA molecules have a sequence-sensing property and can self-assemble, which may play a role in the above phenomena. However, to explain these processes in terms of self-assembly, it first must be proved that nucleosomes retain a DNA sequence-sensing property and can self-assemble. Here, using atomic force microscopy (AFM)-based analyses and a quantitative interaction assay, we show that nucleosomes with identical DNA sequences preferentially associate with each other in the presence of Mg2+ ions. Using Xenopus borealis 5S rDNA nucleosome-positioning sequence and 601 and 603 sequences, homomeric or heteromeric octa- or tetranucleosomes were reconstituted in vitro and induced to form weak intracondensates by MgCl2. AFM clearly showed that DNA sequence-based selective association occurs between nucleosomes with identical DNA sequences. Selective association was also detected between mononucleosomes. We propose that nucleosome self-assembly and DNA self-assembly constitute the mechanism underlying sensing and pairing of homologous chromosomes or chromatin.  相似文献   

18.
B D McKee  G H Karpen 《Cell》1990,61(1):61-72
In Drosophila melanogaster males, the sex chromosomes pair during meiosis in the centric X heterochromatin and at the base of the short arm of the Y (YS), in the vicinity of the nucleolus organizers. X chromosomes deficient for the pairing region segregate randomly from the Y. In this report we show that a single ribosomal RNA (rRNA) gene stimulates X-Y pairing and disjunction when inserted onto a heterochromatically deficient X chromosome by P element-mediated transformation. We also show that insert-containing X chromosomes pair at the site of insertion, that autosomal rDNA inserts do not affect X-Y pairing or disjunction, and that the strength of an X pairing site is proportional to the dose of ectopic rRNA genes. These results demonstrate that rRNA genes can promote X-Y pairing and disjunction and imply that the nucleolus organizers function as X-Y pairing sites in wild-type Drosophila males.  相似文献   

19.
Homologous recombination (HR) is a major mechanism for eliminating DNA double-strand breaks from chromosomes. In this process, the break termini are resected nucleolytically to form 3′ ssDNA (single-strand DNA) overhangs. A recombinase (i.e., a protein that catalyzes homologous DNA pairing and strand exchange) assembles onto the ssDNA and promotes pairing with a homologous duplex. DNA synthesis then initiates from the 3′ end of the invading strand, and the extended DNA joint is resolved via one of several pathways to restore the integrity of the injured chromosome. It is crucial that HR be carefully orchestrated because spurious events can create cytotoxic intermediates or cause genomic rearrangements and loss of gene heterozygosity, which can lead to cell death or contribute to the development of cancer. In this review, we will discuss how DNA motor proteins regulate HR via a dynamic balance of the recombination-promoting and -attenuating activities that they possess.  相似文献   

20.
In wild-type Drosophila melanogaster larvae, the Ultrabithorax (Ubx) gene is expressed in the haltere imaginal discs but not in the majority of cells of the wing imaginal discs. Ectopic expression of the Ubx gene in wing discs can be elicited by the presence of Contrabithorax (Cbx) gain-of-function alleles of the Ubx gene or by loss-of-function mutations in Polycomb (Pc) or in other trans-regulatory genes which behave as repressors of Ubx gene activity. Several Ubx loss-of-function alleles cause the absence of detectable Ubx proteins (UBX) or the presence of truncated UBX lacking the homeodomain. We have compared adult wing phenotypes with larval wing disc UBX patterns in genotypes involving double mutant chromosomes carrying in cis one of those Ubx mutations and the Cbx1 mutation. We show that such double mutant genes are (1) active in the same cells in which the single mutant Cbx1 is expressed, although they are unable to yield functional proteins, and (2) able to induce ectopic expression of a normal homologous Ubx allele in a part of the cells in which the single mutant Cbx1 is active. That induction is conditional upon pairing of the homologous chromosomes (the phenomenon known as transvection), and it is not mediated by UBX. Depletion of Pc gene products by Pc3 mutation strongly enhances the induction phenomenon, as shown by (1) the increase of the number of wing disc cells in which induction of the homologous allele is detectable, and (2) the induction of not only a paired normal allele but also an unpaired one.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号