共查询到20条相似文献,搜索用时 15 毫秒
1.
Sprouty genes control diastema tooth development via bidirectional antagonism of epithelial-mesenchymal FGF signaling 总被引:3,自引:0,他引:3
Klein OD Minowada G Peterkova R Kangas A Yu BD Lesot H Peterka M Jernvall J Martin GR 《Developmental cell》2006,11(2):181-190
Unlike humans, who have a continuous row of teeth, mice have only molars and incisors separated by a toothless region called a diastema. Although tooth buds form in the embryonic diastema, they regress and do not develop into teeth. Here, we identify members of the Sprouty (Spry) family, which encode negative feedback regulators of fibroblast growth factor (FGF) and other receptor tyrosine kinase signaling, as genes that repress diastema tooth development. We show that different Sprouty genes are deployed in different tissue compartments--Spry2 in epithelium and Spry4 in mesenchyme--to prevent diastema tooth formation. We provide genetic evidence that they function to ensure that diastema tooth buds are refractory to signaling via FGF ligands that are present in the region and thus prevent these buds from engaging in the FGF-mediated bidirectional signaling between epithelium and mesenchyme that normally sustains tooth development. 相似文献
2.
Within the mammalian genome, there are many multimember gene families that encode membrane proteins with extracellular leucine rich repeats which are thought to act as cell adhesion or signalling molecules. We previously showed that the members of the NLRR gene family are expressed in a developmentally restricted manner in the mouse with NLRR-1 being expressed in the developing myotome. The FLRT gene family shows a similar genomic layout and predicted protein secondary structure to the NLRRs so we analysed expression of the three FLRT genes during mouse development. FLRTs are glycosylated membrane proteins expressed at the cell surface which localise in a homophilic manner to cell-cell contacts expressing the focal adhesion marker vinculin. Each member of the FLRT family has a distinct, highly regulated expression pattern, as was seen for the NLRR family. FLRT3 has a provocative expression pattern during somite development being expressed in regions of the somite where muscle precursor cells migrate from the dermomyotome and move into the myotome, and later in myotomal precursors destined to migrate towards their final destination, for example, those that form the ventral body wall. FLRT3 is also expressed at the midbrain/hindbrain boundary and in the apical ectodermal ridge, regions where FGF signalling is known to be important, suggesting that the role for FLRT3 in FGF signalling identified in Xenopus is conserved in mammals. FLRT1 is expressed at brain compartmental boundaries and FLRT2 is expressed in a subset of the sclerotome, adjacent to the region that forms the syndetome, suggesting that interaction with FGF signalling may be a general property of FLRT proteins. We confirmed this by showing that all FLRTs can interact with FGFR1 and FLRTs can be induced by the activation of FGF signalling by FGF-2. We conclude that FLRT proteins act as regulators of FGF signalling, being induced by the signal and then able to interact with the signalling receptor, in many tissues during mouse embryogenesis. This process may, in part, be dependent on homophilic intercellular interactions between FLRT molecules. 相似文献
3.
Partanen J 《Journal of neurochemistry》2007,101(5):1185-1193
Development of the central nervous system is coordinated by intercellular signalling centres established within the neural tube. The isthmic organizer (IsO), located between the midbrain and anterior hindbrain, is one such centre. Important signal molecules secreted by the IsO include members of the fibroblast growth factor and Wnt families. These signals are integrated with dorsally and ventrally derived signals to regulate development of the midbrain and rhombomere 1 of the hindbrain. The IsO is operational for a remarkably long period of time. Depending on the developmental stage, it controls a variety of processes such as cell survival, cell identity, neural precursor proliferation, neuronal differentiation and axon guidance. This review focuses on the fibroblast growth factor signalling, its novel molecular regulatory mechanisms and how this pathway regulates multiple aspects of cell behaviour in the developing midbrain and anterior hindbrain. 相似文献
4.
Pownall ME Welm BE Freeman KW Spencer DM Rosen JM Isaacs HV 《Developmental biology》2003,256(1):89-99
The use of a novel inducible FGF signalling system in the frog Xenopus laevis is reported. We show that the lipophilic, synthetic, dimerizing agent AP20187 is able to rapidly activate signalling through an ectopically expressed mutant form of FGFR1 (iFGFR1) in Xenopus embryos. iFGFR1 lacks an extracellular ligand binding domain and contains an AP20187 binding domain fused to the intracellular domain of mouse FGFR1. Induction of signalling by AP20187 is possible until at least early neurula stages, and we demonstrate that ectopically expressed iFGFR1 protein persists until late neurula stages. We show that activation of signalling through iFGFR1 can mimic a number of previously reported FGF activities, including mesoderm induction, repression of anterior development, and neural posteriorization. We show that competence to morphological posteriorization of the anteroposterior axis by FGF signalling only extends until about stage 10.5. We demonstrate that the competence of neural tissue to express the posterior markers Hoxa7 and Xcad3, in response to FGF signalling, is lost by the end of gastrula stages. We also show that activation of FGF signalling stimulates morphogenetic movements in neural tissue until at least the end of the gastrula stage. 相似文献
5.
6.
Fibroblast growth factor (FGF) signalling has important roles in the development of the embryonic pharyngeal (branchial) arches, but its effects on innervation of the arches and associated structures have not been studied extensively. We investigated the consequences of deleting two receptor tyrosine kinase (RTK) antagonists of the Sprouty (Spry) gene family on the early development of the branchial nerves. The morphology of the facial, glossopharyngeal and vagus nerves are abnormal in Spry1−/−;Spry2−/− embryos. We identify specific defects in the epibranchial placodes and neural crest, which contribute sensory neurons and glia to these nerves. A dissection of the tissue-specific roles of these genes in branchial nerve development shows that Sprouty gene deletion in the pharyngeal epithelia can affect both placode formation and neural crest fate. However, epithelial-specific gene deletion only results in defects in the facial nerve and not the glossopharyngeal and vagus nerves, suggesting that the facial nerve is most sensitive to perturbations in RTK signalling. Reducing the Fgf8 gene dosage only partially rescued defects in the glossopharyngeal nerve and was not sufficient to rescue facial nerve defects, suggesting that FGF8 is functionally redundant with other RTK ligands during facial nerve development. 相似文献
7.
Newborn to 9-week-old kittens were anesthetized and then sacrificed by inserting a scalpel into the thoracic cavity and severing the descending aorta. The cerebella were removed and processed according to Golgi-Cox and rapid Golgi modifications. The results indicate that the dendritic processes of the granule cells undergo a marked postnatal maturation even though there is little postmigratory change in the size and shape of the cell body. A club-shaped swelling of the distal portions of the dendrites is observed by the end of the first week; this "claw" becomes multilobated by three weeks and displays elaborate digitiform projections by nine weeks. The sequence of postnatal development in the kitten appears to follow a time course similar to that observed in other species. A possible correlation between the postnatal development of the granule cell and the postnatal development of the spincocerebellar system is discussed. 相似文献
8.
The characteristics of [3H]GABA transport were investigated in preparations greatly enriched in different classes of cerebellar cells. In contrast to observations in situ, isolated Purkinje cells readily accumulated [3H]GABA. In comparison with astrocytes, theV
max of the high-affinity uptake process was sixfold higher (0.31 vs. 0.05 nmol/min/106 cells) and the apparentK
t twofold greater (2 vs. 1 M). In contrast to these cell types, uptake was very low in granule cell-enriched preparations.cis-1,3-Aminocyclohexane carboxylic acid was a potent inhibitor of [3H]GABA uptake by the Purkinje cells and a weak blocker in astrocytes, while the converse was the case for -alanine. Diaminobutyric acid strongly inhibited uptake in both cell types. [3H]GABA transport was Na+ dependent in both cell classes. However, veratridine and ouabain selectively blocked [3H]GABA accumulation in the Purkinje cells, which were also more sensitive than the astrocytes to the glycolysis inhibitor, NaF. The results indicated, therefore, marked differences between Purkinje cells and astrocytes in the properties of both the [3H]GABA transport systems and the underlying metabolic processes. 相似文献
9.
Multiple signaling molecules, including Fibroblast Growth Factor (FGF) and Wnt, induce two patches of ectoderm on either side of the hindbrain to form the progenitor cell population for the inner ear, or otic placode. Here we report that in Spry1, Spry2 compound mutant embryos (Spry1−/−; Spry2−/− embryos), the otic placode is increased in size. We demonstrate that the otic placode is larger due to the recruitment of cells, normally destined to become cranial epidermis, into the otic domain. The enlargement of the otic placode observed in Spry1−/−; Spry2−/− embryos is preceded by an expansion of a Wnt8a expression domain in the adjacent hindbrain. We demonstrate that both the enlargement of the otic placode and the expansion of the Wnt8a expression domain can be rescued in Spry1−/−; Spry2−/− embryos by reducing the gene dosage of Fgf10. Our results define a FGF-responsive window during which cells can be continually recruited into the otic domain and uncover SPRY regulation of the size of a putative Wnt inductive center. 相似文献
10.
Kramer S Okabe M Hacohen N Krasnow MA Hiromi Y 《Development (Cambridge, England)》1999,126(11):2515-2525
Extracellular factors such as FGF and EGF control various aspects of morphogenesis, patterning and cellular proliferation in both invertebrates and vertebrates. In most systems, it is primarily the distribution of these factors that controls the differential behavior of the responding cells. Here we describe the role of Sprouty in eye development. Sprouty is an extracellular protein that has been shown to antagonize FGF signaling during tracheal branching in Drosophila. It is a novel type of protein with a highly conserved cysteine-rich region. In addition to the embryonic tracheal system, sprouty is also expressed in other tissues including the developing eye imaginal disc, embryonic chordotonal organ precursors and the midline glia. In each of these tissues, EGF receptor signaling is known to participate in the control of the correct number of neurons or glia. We show that, in all three tissues, the loss of sprouty results in supernumerary neurons or glia, respectively. Furthermore, overexpression of sprouty in wing veins and ovarian follicle cells, two other tissues where EGF signaling is required for patterning, results in phenotypes that resemble the loss-of-function phenotypes of Egf receptor. These results suggest that Sprouty acts as an antagonist of EGF as well as FGF signaling pathways. These receptor tyrosine kinase-mediated pathways may share not only intracellular signaling components but also extracellular factors that modulate the strength of the signal. 相似文献
11.
12.
The traditional classification of signalling in biological systems is insufficient and outdated and novel efforts must take into account advances in systems theory, information theory and linguistics. We present some of the classification systems currently used both within and outside of the biological field and discuss some specific aspects of the nature of signalling in tissue development. The analytical methods used in understanding non-biological networks provide a valuable vocabulary, which requires integration and a system of classification to further facilitate development. 相似文献
13.
Investigation of differentially expressed genes during the development of mouse cerebellum 总被引:5,自引:0,他引:5
Before the discovery of DNA microarray and DNA chip technology, the expression of only a small number of genes could be analyzed at a time. Currently, such technology allows us the simultaneous analysis of a large number of genes to systematically monitor their expression patterns that may be associated with various biological phenomena. We utilized the Affymetrix GeneChip Mu11K to analyze the gene expression profile in developing mouse cerebellum to assist in the understanding of the genetic basis of cerebellar development in mice. Our analysis showed 81.6% (10,321/12,654) of the genes represented on the GeneChip were expressed in the postnatal cerebellum, and among those, 8.7% (897/10,321) were differentially expressed with more than a two-fold change in their maximum and minimum expression levels during the developmental time course. Further analysis of the differentially expressed genes that were clustered in terms of their expression patterns and the function of their encoded products revealed an aspect of the genetic foundation that lies beneath the cellular events and neural network formation that takes place during the development of the mouse cerebellum. 相似文献
14.
ERK pathway positively regulates the expression of Sprouty genes 总被引:6,自引:0,他引:6
Ozaki K Kadomoto R Asato K Tanimura S Itoh N Kohno M 《Biochemical and biophysical research communications》2001,285(5):1084-1088
Sprouty was originally identified as an inhibitor of Drosophila development-associated receptor tyrosine kinase (RTK) signaling. Although RTK signaling has been shown to induce Sprouty gene expression, the precise induction pathway downstream of RTK remains unclear. As RTK signaling pathway includes activation of extracellular signal-regulated kinases (ERKs), we have examined a correlation between activation of ERKs and induction of Sprouty gene expression. All reagents which induce the activation of ERKs induce Sprouty gene expression; these agents include not only growth factors which bind to RTK but also phorbol 12-myristate-13-acetate and active Raf-1 kinase. Furthermore, the Sprouty gene expression induced by all those agents is totally suppressed when the cells are pretreated with specific inhibitors of ERK kinase (MEK). Human tumor cells which exhibit constitutive activation of ERKs show elevated expression of Sprouty genes, which is abolished by treatment of these cells with MEK inhibitors. All these findings clearly indicate that Sprouty gene expression is positively regulated by the ERK pathway downstream of RTK. 相似文献
15.
Chapoval SP Dasgupta P Smith EP DeTolla LJ Lipsky MM Kelly-Welch AE Keegan AD 《Journal of immunology (Baltimore, Md. : 1950)》2011,186(4):2571-2583
Th2 cells induce asthma through the secretion of cytokines. Two such cytokines, IL-4 and IL-13, are critical mediators of many features of this disease. They both share a common receptor subunit, IL-4Rα, and signal through the STAT6 pathway. STAT6(-/-) mice have impaired Th2 differentiation and reduced airway response to allergen. Transferred Th2 cells were not able to elicit eosinophilia in response to OVA in STAT6(-/-) mice. To clarify the role of STAT6 in allergic airway inflammation, we generated mouse bone marrow (BM) chimeras. We observed little to no eosinophilia in OVA-treated STAT6(-/-) mice even when STAT6(+/+) BM or Th2 cells were provided. However, when Th2 cells were transferred to STAT6×Rag2(-/-) mice, we observed an eosinophilic response to OVA. Nevertheless, the expression of STAT6 on either BM-derived cells or lung resident cells enhanced the severity of OVA-induced eosinophilia. Moreover, when both the BM donor and recipient lacked lymphocytes, transferred Th2 cells were sufficient to induce the level of eosinophilia comparable with that of wild-type (WT) mice. The expression of STAT6 in BM-derived cells was more critical for the enhanced eosinophilic response. Furthermore, we found a significantly higher number of CD4(+)CD25(+)Foxp3(+) T cells (regulatory T cells [Tregs]) in PBS- and OVA-treated STAT6(-/-) mouse lungs compared with that in WT animals suggesting that STAT6 limits both naturally occurring and Ag-induced Tregs. Tregs obtained from either WT or STAT6(-/-) mice were equally efficient in suppressing CD4(+) T cell proliferation in vitro. Taken together, our studies demonstrate multiple STAT6-dependent and -independent features of allergic inflammation, which may impact treatments targeting STAT6. 相似文献
16.
Specific regions within the embryonic midbrain and cerebellum require different levels of FGF signaling during development 总被引:1,自引:0,他引:1
Basson MA Echevarria D Ahn CP Sudarov A Joyner AL Mason IJ Martinez S Martin GR 《Development (Cambridge, England)》2008,135(5):889-898
Prospective midbrain and cerebellum formation are coordinated by FGF ligands produced by the isthmic organizer. Previous studies have suggested that midbrain and cerebellum development require different levels of FGF signaling. However, little is known about the extent to which specific regions within these two parts of the brain differ in their requirement for FGF signaling during embryogenesis. Here, we have explored the effects of inhibiting FGF signaling within the embryonic mouse midbrain (mesencephalon) and cerebellum (rhombomere 1) by misexpressing sprouty2 (Spry2) from an early stage. We show that such Spry2 misexpression moderately reduces FGF signaling, and that this reduction causes cell death in the anterior mesencephalon, the region furthest from the source of FGF ligands. Interestingly, the remaining mesencephalon cells develop into anterior midbrain, indicating that a low level of FGF signaling is sufficient to promote only anterior midbrain development. Spry2 misexpression also affects development of the vermis, the part of the cerebellum that spans the midline. We found that, whereas misexpression of Spry2 alone caused loss of the anterior vermis, reducing FGF signaling further, by decreasing Fgf8 gene dose, resulted in loss of the entire vermis. Our data suggest that cell death is not responsible for vermis loss, but rather that it fails to develop because reducing FGF signaling perturbs the balance between vermis and roof plate development in rhombomere 1. We suggest a molecular explanation for this phenomenon by providing evidence that FGF signaling functions to inhibit the BMP signaling that promotes roof plate development. 相似文献
17.
An early requirement for FGF signalling in the acquisition of neural cell fate in the chick embryo 总被引:1,自引:0,他引:1
BACKGROUND: In Xenopus embryos, fibroblast growth factors (FGFs) and secreted inhibitors of bone morphogenetic protein (BMP)-mediated signalling have been implicated in neural induction. The precise roles, if any, that these factors play in neural induction in amniotes remains to be established. RESULTS: To monitor the initial steps of neural induction in the chick embryo, we developed an in vitro assay of neural differentiation in epiblast cells. Using this assay, we found evidence that neural cell fate is specified in utero, before the generation of the primitive streak or Hensen's node. Early epiblast cells expressed both Bmp4 and Bmp7, but the expression of both genes was downregulated as cells acquired neural fate. During prestreak and gastrula stages, exposure of epiblast cells to BMP4 activity in vitro was sufficient to block the acquisition of neural fate and to promote the generation of epidermal cells. Fgf3 was also found to be expressed in the early epiblast, and ongoing FGF signalling in epiblast cells was required for acquisition of neural fate and for the suppression of Bmp4 and Bmp7 expression. CONCLUSIONS: The onset of neural differentiation in the chick embryo occurs in utero, before the generation of Hensen's node. Fgf3, Bmp4 and Bmp7 are each expressed in prospective neural cells, and FGF signalling appears to be required for the repression of Bmp expression and for the acquisition of neural fate. Subsequent exposure of epiblast cells to BMPs, however, can prevent the generation of neural tissue and induce cells of epidermal character. 相似文献
18.
Morphometric analysis of cell types in the ovine corpus luteum throughout the estrous cycle 总被引:5,自引:0,他引:5
C E Farin C L Moeller H R Sawyer F Gamboni G D Niswender 《Biology of reproduction》1986,35(5):1299-1308
The cellular composition of ovine corpora lutea obtained during the early (Day 4), mid (Days 8 and 12), and late (Day 16) stages of the estrous cycle was determined by morphometric analysis. Individual corpora lutea were collected via midventral laparotomy from a total of 19 ewes. A center slice from each corpus luteum was processed for electron microscopy and subsequent morphometric analysis of the numbers and sizes of steroidogenic and nonsteroidogenic cells. Luteal weight progressively increased throughout the estrous cycle (p less than 0.05). Corpora lutea collected on Day 16 were assigned to one of two subgroups on the basis of gross appearance and weight: nonregressed (NR, 542 +/- 25 mg) or regressed (R, 260 +/- 2 mg). There were no significant changes in the proportion of the corpus luteum occupied by small luteal cells (19 +/- 2%) or large luteal cells (36 +/- 1%) throughout the estrous cycle. The total number of steroidogenic cells per corpus luteum increased from 21.8 +/- 3.7 (X 10(6)) on Day 4 to 61.7 +/- 5.4 (X 10(6)) on Day 8 (p less than 0.05) and remained elevated thereafter. The number of small luteal cells was 10.0 +/- 2.7 (X 10(6)), 39.7 +/- 1.4 (X 10(6)), 46.1 +/- 5.8 (X 10(6)), 49.0 +/- 13.7 (X 10(6)), and 29.9 +/- 8.6 (X 10(6)) on Days 4, 8, 12, 16 (NR), and 16 (R), respectively (p less than 0.05, Day 4 vs. Days 8, 12, 16 NR). In contrast, the number of large luteal cells was 11.8 +/- 1.5 (X 10(6)) on Day 4 and did not vary significantly during the remainder of the estrous cycle. The numbers of nonsteroidogenic cell types increased (p less than 0.05) from Day 4 to Day 16 (NR) but were decreased in regressed corpora lutea (Day 16 R). Regression was characterized by a 50% decrease (p less than 0.05) in the total number of cells per corpus luteum from 243 +/- 57 ( X 10(6)) on Day 16 (NR) to 125 +/- 14 ( X 10(6)) on Day 16 (R) (p less than 0.05). Small luteal cells remained constant in volume throughout the entire estrous cycle (2520 +/- 270 microns 3), whereas large luteal cells increased in size from 5300 +/- 800 microns 3 on Day 4 to 16,900 +/- 3300 microns 3 on Day 16 (NR) (p less than 0.05). In summary, small luteal cells increased in number but not size throughout the estrous cycle, whereas large luteal cells increased in size but not number. 相似文献
19.
Sprouty2, a mouse deafness gene, regulates cell fate decisions in the auditory sensory epithelium by antagonizing FGF signaling 总被引:4,自引:0,他引:4
The auditory sensory epithelium (organ of Corti), where sound waves are converted to electrical signals, comprises a highly ordered array of sensory receptor (hair) cells and nonsensory supporting cells. Here, we report that Sprouty2, which encodes a negative regulator of signaling via receptor tyrosine kinases, is required for normal hearing in mice, and that lack of SPRY2 results in dramatic perturbations in organ of Corti cytoarchitecture: instead of two pillar cells, there are three, resulting in the formation of an ectopic tunnel of Corti. We demonstrate that these effects are due to a postnatal cell fate transformation of a Deiters' cell into a pillar cell. Both this cell fate change and hearing loss can be partially rescued by reducing Fgf8 gene dosage in Spry2 null mutant mice. Our results provide evidence that antagonism of FGF signaling by SPRY2 is essential for establishing the cytoarchitecture of the organ of Corti and for hearing. 相似文献
20.
Manli Chuai Dirk Dormann Cornelis J. Weijer 《Seminars in cell & developmental biology》2009,20(8):947-955
Imaging is a method of choice to investigate the complex spatio-temporal cellular dynamics and the signalling pathways that control them during development. The ability to tag many proteins in vivo makes it possible to analyse the detailed dynamics of these interactions ranging over several orders of magnitude; from the study of single molecule events on the millisecond and nanometre scale up to the complex three-dimensional behaviour of cells in tissues on the millimetre scale over time periods of hours to days. Great advances are being made in the detailed study of molecular processes using high resolution imaging techniques in transparent samples close to the surface of cells or tissues, where light scattering is minimal. The major challenge is to translate some of these methods to the study of cells and tissues in their native 3D environment. These imaging methods require novel and innovative analysis methods to fully exploit the information available in these data. We will illustrate some of these points in the investigation of the development of the cellular slime mould Dictyostelium discoideum and the study of cell behaviours during gastrulation in the chick embryo. 相似文献