首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Malaria control in sub-Saharan Africa relies on the widespread use of long-lasting insecticidal nets (LLINs) or the indoor residual spraying of insecticide. Disease transmission may be maintained even when these indoor interventions are universally used as some mosquitoes will bite in the early morning and evening when people are outside. As countries seek to eliminate malaria, they can target outdoor biting using new vector control tools such as spatial repellent emanators, which emit airborne insecticide to form a protective area around the user. Field data are used to incorporate a low-technology emanator into a mathematical model of malaria transmission to predict its public health impact across a range of scenarios. Targeting outdoor biting by repeatedly distributing emanators alongside LLINs increases the chance of elimination, but the additional benefit depends on the level of anthropophagy in the local mosquito population, emanator effectiveness and the pre-intervention proportion of mosquitoes biting outdoors. High proportions of pyrethroid-resistant mosquitoes diminish LLIN impact because of reduced mosquito mortality. When mosquitoes are highly anthropophagic, this reduced mortality leads to more outdoor biting and a reduced additional benefit of emanators, even if emanators are assumed to retain their effectiveness in the presence of pyrethroid resistance. Different target product profiles are examined, which show the extra epidemiological benefits of spatial repellents that induce mosquito mortality.This article is part of the theme issue ‘Novel control strategies for mosquito-borne diseases’.  相似文献   

2.
3.
Abstract. Permethrin-impregnated bednets protect children against malaria in The Gambia, where Anopheles gambiae complex mosquitoes are the main vectors of malaria. However, no effect has been found on mosquito density, parous rates or sporozoite rates in An.gambiae sensu lato populations; only a reduction in the numbers of mosquitoes resting indoors in rooms with treated bednets. A possible explanation for this paradox is that exposure to treated bednets leads to changed vector behaviour such as a shift in biting time, a diversion to biting outdoors instead of indoors, to biting animals instead of humans, or to increased duration of the gonotrophic cycle. To investigate these possibilities, we observed the biting and exiting behaviour of An.gambiae in ten pairs of villages, in half of which the residents used permethrin-treated bednets. The possible influence of treated bednets on the gonotrophic cycle length was evaluated by mark-release-recapture experiment. No significant difference was found between villages with treated and untreated bednets in the indoor/outdoor ratio of human biting, in mean biting times or in human blood indices of An.gambiae females found resting indoors in the mornings. The proportions of unfed, fed or gravid An.gambiae females collected in exit traps, and the number of females exiting showed no significant differences between rooms with treated and untreated bednets. Indications for a gonotrophic cycle length of 2 days were found. No evidence for any change in duration of the gonotrophic cycle in relation to exposure to treated bednets was found, although the number of recaptures was low in the villages with treated bednets. Since equal numbers of infective An.gambiae were found in villages with treated or untreated bednets, and no changes in mosquito behaviour were detected, we cannot account for how children are protected against malaria by treated bednets. One possibility is that mosquitoes divert to bite other hosts, including adults.  相似文献   

4.

Background

Mosquitoes commute between blood-meal hosts and water. Thus, heterogeneity in human biting reflects underlying spatial heterogeneity in the distribution and suitability of larval habitat as well as inherent differences in the attractiveness, suitability and distribution of blood-meal hosts. One of the possible strategies of malaria control is to identify local vector species and then attack water bodies that contain their larvae.

Methods

Biting and host seeking, not oviposition, have been the focus of most previous studies of mosquitoes and malaria transmission. This study presents a mathematical model that incorporates mosquito oviposition behaviour.

Results

The model demonstrates that oviposition is one potential factor explaining heterogeneous biting and vector distribution in a landscape with a heterogeneous distribution of larval habitat. Adult female mosquitoes tend to aggregate around places where they oviposit, thereby increasing the risk of malaria, regardless of the suitability of the habitat for larval development. Thus, a water body may be unsuitable for adult mosquito emergence, but simultaneously, be a source for human malaria.

Conclusion

Larval density may be a misleading indicator of a habitat's importance for malaria control. Even if mosquitoes could be lured to oviposit in sprayed larval habitats, this would not necessarily mitigate – and might aggravate – the risk of malaria transmission. Forcing mosquitoes to fly away from humans in search of larval habitat may be a more efficient way to reduce the risk of malaria than killing larvae. Thus, draining, fouling, or filling standing water where mosquitoes oviposit can be more effective than applying larvicide.  相似文献   

5.
A model for a vector mosquito population with two bloodmeal hosts (man and a domestic animal) was developed to study the influences of domestic animals on the frequency of mosquito bites on man and the endemicity of human malaria. The vector population model, including blood-feeding success in the adult stage (depending on host density and biting efficiency) and density-dependent regulation in the larval stage, was combined with the Ross-Macdonald malaria transmission model. Model analyses suggested that introduction of domestic animals easily fed upon by mosquitoes increases mosquito density and, in some situations, frequency of mosquito bites on man and the infection rate of malaria through increased success of blood-feeding. Extinction of malaria was predicted only when an extremely large number of easily accessible (as compared to man) domestic animals are introduced. Limitations in the concept of zooprophylaxis and problems of livestock management in malaria control are discussed.  相似文献   

6.
Residual transmission is the persistence of malaria transmission after scale-up of appropriate vector control tools and is one of the key challenges for malaria elimination today. Although long associated with outdoor biting, other mosquito behaviours such as partly feeding upon animals contribute greatly to sustaining transmission. Peri-domestic livestock can be used as decoy to protect humans from blood-seeking vectors but this approach often leads to an increased malaria risk in a phenomenon known as zoopotentiation. Treating the said livestock with drugs capable of killing intestinal parasites as well as mosquitoes that feed upon them has the potential to tackle malaria through a previously unexplored mechanism. The advantages and challenges associated with this approach are briefly discussed here. Numerous references are purposely provided.This article is part of the theme issue ‘Novel control strategies for mosquito-borne diseases’.  相似文献   

7.
In the process of bloodfeeding, female Anopheles can transmit malaria parasites to humans. At night, while searching for blood, these insects respond to visual, physical and chemical properties of humans. Current research concentrates on the identification of kairomones, which guide mosquitoes to humans. Earlier observations on the biting behaviour of Anopheles gambiae s.s. on humans have now resulted in the discovery of a remarkable attractant for this important malaria vector, and it is thought that this will accelerate the development of odour-baited traps for malaria mosquito surveillance and control in sub-Saharan Africa, as discussed here by Bart Knols and Ruurd De Jong.  相似文献   

8.
9.
Anopheles farauti is the primary malaria vector throughout the coastal regions of the Southwest Pacific. A shift in peak biting time from late to early in the night occurred following widespread indoor residue spraying of dichlorodiphenyltrichloro-ethane (DDT) and has persisted in some island populations despite the intervention ending decades ago. We used mitochondrial cytochrome oxidase I (COI) sequence data and 12 newly developed microsatellite markers to assess the population genetic structure of this malaria vector in the Solomon Archipelago. With geographically distinct differences in peak A. farauti night biting time observed in the Solomon Archipelago, we tested the hypothesis that strong barriers to gene flow exist in this region. Significant and often large fixation index (FST) values were found between different island populations for the mitochondrial and nuclear markers, suggesting highly restricted gene flow between islands. Some discordance in the location and strength of genetic breaks was observed between the mitochondrial and microsatellite markers. Since early night biting A. farauti individuals occur naturally in all populations, the strong gene flow barriers that we have identified in the Solomon Archipelago lend weight to the hypothesis that the shifts in peak biting time from late to early night have appeared independently in these disconnected island populations. For this reason, we suggest that insecticide impregnated bed nets and indoor residue spraying are unlikely to be effective as control tools against A. farauti occurring elsewhere, and if used, will probably result in peak biting time behavioural shifts similar to that observed in the Solomon Islands.  相似文献   

10.
Vector control is one of the major global strategies for control of malaria. However, the major obstacle for vector control is the development of multiple resistances to organochlorine, organophosphorus insecticides and pyrethroids that are currently being used in public health for spraying and in bednets. Salivary glands of vectors are the first target organ for human-vector contact during biting and parasite-vector contact prior to parasite development in the mosquito midguts. The salivary glands secrete anti-haemostatic, anti-inflammatory biologically active molecules to facilitate blood feeding from the host and also inadvertently inject malaria parasites into the vertebrate host. The Anopheles stephensi mosquito, an urban vector of malaria to both human and rodent species has been identified as a reference laboratory model to study mosquito—parasite interactions. In this study, we adopted a conventional proteomic approach of 2D-electrophoresis coupled with MALDI-TOF mass spectrometry and bioinformatics to identify putative differentially expressed annotated functional salivary proteins between An. stephensi susceptible and multiresistant strains with same genetic background. Our results show 2D gel profile and MALDI-TOF comparisons that identified 31 differentially expressed putative modulated proteins in deltamethrin/DDT resistant strains of An. stephensi. Among these 15 proteins were found to be upregulated and 16 proteins were downregulated. Our studies interpret that An. stephensi (multiresistant) caused an upregulated expression of proteins and enzymes like cytochrome 450, short chain dehyrdogenase reductase, phosphodiesterase etc that may have an impact in insecticide resistance and xenobiotic detoxification. Our study elucidates a proteomic response of salivary glands differentially regulated proteins in response to insecticide resistance development which include structural, redox and regulatory enzymes of several pathways. These identified proteins may play a role in regulating mosquito biting behavior patterns and may have implications in the development of malaria parasites in resistant mosquitoes during parasite transmission.  相似文献   

11.
House-resting Anopheles mosquitoes are targeted for vector control interventions; however, without proper species identification, the importance of these Anopheles to malaria transmission is unknown. Anopheles longipalpis, a non-vector species, has been found in significant numbers resting indoors in houses in southern Zambia, potentially impacting on the utilization of scarce resources for vector control. The identification of An. longipalpis is currently based on classical morphology using minor characteristics in the adult stage and major ones in the larval stage. The close similarity to the major malaria vector An. funestus led to investigations into the development of a molecular assay for identification of An. longipalpis. Molecular analysis of An. longipalpis from South Africa and Zambia revealed marked differences in size and nucleotide sequence in the second internal transcribed spacer (ITS2) region of ribosomal DNA between these two populations, leading to the conclusion that more than one species was being analysed. Phylogenetic analysis showed the Zambian samples aligned with An. funestus, An. vaneedeni and An. parensis, whereas the South African sample aligned with An. leesoni, a species that is considered to be more closely related to the Asian An. minimus subgroup than to the African An. funestus subgroup. Species-specific primers were designed to be used in a multiplex PCR assay to distinguish between these two cryptic species and members of the An. funestus subgroup for which there is already a multiplex PCR assay.  相似文献   

12.
Abstract. Mosquito-borne diseases are a major health problem in Sri Lanka. Human biting mosquitoes were collected during the night (18.00–06.00 hours) at Nikawehera village, in the malaria endemic intermediate rainfall zone of the country. Collections were made at monthly intervals in the period October 1991 to April 1992, which included the main rainy season due to the northeast monsoon (October-January). Thirteen Anopheles , eleven Culex , three Aedes , three Mansonia and one Armigeres species were identified, including known vectors of malaria, Bancroftian filariasis, Japanese encephalitis and dengue fever. Mosquito human-biting rates were highest in December. The main malaria vector Anopheles culicifacies showed peak biting between 18.00 and 23.00 hours whereas the predominant culicines Culex fuscocephala and Cx quinquefasciatus preferred to bite after midnight. In 1991-92 the prevalence of some species of anophelines at Nikawehera differed markedly from that observed in 1990-91 and the possible reasons are discussed.  相似文献   

13.
Sustained malaria control is underway using a combination of vector control, prompt diagnosis and treatment of malaria cases. Progress is excellent, but for long-term control, low-cost, sustainable tools that supplement existing control programs are needed. Conventional vector control tools such as indoor residual spraying and house screening are highly effective, but difficult to deliver in rural areas. Therefore, an additional means of reducing mosquito house entry was evaluated: the screening of mosquito house entry points by planting the tall and densely foliated repellent plant Lantana camara L. around houses. A pilot efficacy study was performed in Kagera Region, Tanzania in an area of high seasonal malaria transmission, where consenting families within the study village planted L. camara (Lantana) around their homes and were responsible for maintaining the plants. Questionnaire data on house design, socioeconomic status, malaria prevention knowledge, attitude and practices was collected from 231 houses with Lantana planted around them 90 houses without repellent plants. Mosquitoes were collected using CDC Light Traps between September 2008 and July 2009. Data were analysed with generalised negative binomial regression, controlling for the effect of sampling period. Indoor catches of mosquitoes in houses with Lantana were compared using the Incidence Rate Ratio (IRR) relative to houses without plants in an adjusted analysis. There were 56% fewer Anopheles gambiae s.s. (IRR 0.44, 95% CI 0.28-0.68, p<0.0001); 83% fewer Anopheles funestus s.s. (IRR 0.17, 95% CI 0.09-0.32, p<0.0001), and 50% fewer mosquitoes of any kind (IRR 0.50, 95% CI 0.38-0.67, p<0.0001) in houses with Lantana relative to controls. House screening using Lantana reduced indoor densities of malaria vectors and nuisance mosquitoes with broad community acceptance. Providing sufficient plants for one home costs US $1.50 including maintenance and labour costs, (30 cents per person). L. camara mode of action and suitability for mosquito control is discussed.  相似文献   

14.
Understanding the endogenous factors that drive the population dynamics of malaria mosquitoes will facilitate more accurate predictions about vector control effectiveness and our ability to destabilize the growth of either low- or high-density insect populations. We assessed whether variation in phenotypic traits predict the dynamics of Anopheles gambiae sensu lato mosquitoes, the most important vectors of human malaria. Anopheles gambiae dynamics were monitored over a six-month period of seasonal growth and decline. The population exhibited density-dependent feedback, with the carrying capacity being modified by rainfall (97% wAIC(c) support). The individual phenotypic expression of the maternal (p = 0.0001) and current (p = 0.040) body size positively influenced population growth. Our field-based evidence uniquely demonstrates that individual fitness can have population-level impacts and, furthermore, can mitigate the impact of exogenous drivers (e.g. rainfall) in species whose reproduction depends upon it. Once frontline interventions have suppressed mosquito densities, attempts to eliminate malaria with supplementary vector control tools may be attenuated by increased population growth and individual fitness.  相似文献   

15.
Malaria is an important global public health challenge, and is transmitted by anopheline mosquitoes during blood feeding. Mosquito vector control is one of the most effective methods to control malaria, and population replacement with genetically engineered mosquitoes to block its transmission is expected to become a new vector control strategy. The salivary glands are an effective target tissue for the expression of molecules that kill or inactivate malaria parasites. Moreover, salivary gland cells express a large number of molecules that facilitate blood feeding and parasite transmission to hosts. In the present study, we adapted a functional deficiency system in specific tissues by inducing cell death using the mouse Bcl-2-associated X protein (Bax) to the Asian malaria vector mosquito, Anopheles stephensi. We applied this technique to salivary gland cells, and produced a transgenic strain containing extremely low amounts of saliva. Although probing times for feeding on mice were longer in transgenic mosquitoes than in wild-type mosquitoes, transgenic mosquitoes still successfully ingested blood. Transgenic mosquitoes also exhibited a significant reduction in oocyst formation in the midgut in a rodent malaria model. These results indicate that mosquito saliva plays an important role in malaria infection in the midgut of anopheline mosquitoes. The dysfunction in the salivary glands enabled the inhibition of malaria transmission from hosts to mosquito midguts. Therefore, salivary components have potential in the development of new drugs or genetically engineered mosquitoes for malaria control.  相似文献   

16.
Malaria vector mosquitoes belonging to the Anopheles gambiae complex were studied in four hamlets in The Gambia. All inhabitants were given bednets treated either with a placebo (milk) in two hamlets or with the pyrethroid insecticide permethrin (500 mg/m2) in two other hamlets. Malaria transmission occurred mainly during a few weeks of the rainy season, in September and October 1987. The indoor resting densities of mosquitoes in permethrin-treated hamlets were reduced, and we estimated over 90% reduction in biting on man by An. gambiae Giles sensu stricto in these hamlets. No mosquitoes were found under permethrin-treated bednets compared with eighty-one recovered from placebo-treated bednets. Mosquitoes exited more readily from rooms where permethrin-treated bednets were used than from rooms with placebo-treated nets. The annual mean probability that a child would receive an infective bite was estimated to be 0.09 in hamlets with insecticide-treated bednets, compared with 1.9 where placebo-treated bednets were used. Permethrin-treated bednets are therefore recommended as a means of effectively reducing the risk of exposure to malaria transmission, particularly in areas of low seasonal transmission.  相似文献   

17.
Differences between individual human houses can confound results of studies aimed at evaluating indoor vector control interventions such as insecticide treated nets (ITNs) and indoor residual insecticide spraying (IRS). Specially designed and standardised experimental huts have historically provided a solution to this challenge, with an added advantage that they can be fitted with special interception traps to sample entering or exiting mosquitoes. However, many of these experimental hut designs have a number of limitations, for example: 1) inability to sample mosquitoes on all sides of huts, 2) increased likelihood of live mosquitoes flying out of the huts, leaving mainly dead ones, 3) difficulties of cleaning the huts when a new insecticide is to be tested, and 4) the generally small size of the experimental huts, which can misrepresent actual local house sizes or airflow dynamics in the local houses. Here, we describe a modified experimental hut design - The Ifakara Experimental Huts- and explain how these huts can be used to more realistically monitor behavioural and physiological responses of wild, free-flying disease-transmitting mosquitoes, including the African malaria vectors of the species complexes Anopheles gambiae and Anopheles funestus, to indoor vector control-technologies including ITNs and IRS. Important characteristics of the Ifakara experimental huts include: 1) interception traps fitted onto eave spaces and windows, 2) use of eave baffles (panels that direct mosquito movement) to control exit of live mosquitoes through the eave spaces, 3) use of replaceable wall panels and ceilings, which allow safe insecticide disposal and reuse of the huts to test different insecticides in successive periods, 4) the kit format of the huts allowing portability and 5) an improved suite of entomological procedures to maximise data quality.  相似文献   

18.
In two formerly malarious parts of Italy, age-related seroprevalence rates of Kaposi's sarcoma-associated herpesvirus [human herpesvirus 8 (KSHV/HHV8)] were determined from local blood donors and correlated with periods of vector control during anti-malaria campaigns. In Veneto, decreased KSHV/HHV8 seroprevalence in the 1951-1955 birth cohort coincides with the peak of DDT house-spraying. In Sardinia, where larviciding augmented indoor DDT-spraying, a significant drop of KSHV/HHV8 seroprevalence between 1945 and 1950 and 1951-1955 birth cohorts (P = 0.0046) coincides with suppression of the malaria vector Anopheles labranchiae Falleroni (Diptera: Culicidae). These results are consistent with age-related association between KSHV/HHV8 seroprevalence rates in native/resident populations and the density of malaria vectors in Veneto and Sardinia. This example supports our 'promoter arthropod' hypothesis on the role of haematophagous insects [putatively blackflies (Simuliidae), sandflies (Phlebotominae) and biting midges (Ceratopogonidae), as well as mosquitoes] when their bites induce hypersensitivity and immunosuppression, potentiate KSHV/HHV8 transmission via human saliva (when insect bite lesions are licked by another person whose saliva carries the virus) and may facilitate Kaposi's sarcoma.  相似文献   

19.
We performed a longitudinal study of adult survival of Anopheles darlingi, the most important vector in the Amazon, in a malarigenous frontier zone of Brazil. Survival rates were determined from both parous rates and multiparous dissections. Anopheles darlingi human biting rates, daily survival rates and expectation of life where higher in the dry season, as compared to the rainy season, and were correlated with malaria incidence. The biting density of mosquitoes that had survived long enough for completing at least one sporogonic cycle was related with the number of malaria cases by linear regression. Survival rates were the limiting factor explaining longitudinal variations in Plasmodium vivax malaria incidence and the association between adult mosquito survival and malaria was statistically significant by logistic regression (P<0.05). Survival rates were better correlated with malaria incidence than adult mosquito biting density. Mathematical modeling showed that P. falciparum and P. malariae were more vulnerable to changes in mosquito survival rates because of longer sporogonic cycle duration, as compared to P. vivax, which could account for the low prevalence of the former parasites observed in the study area. Population modeling also showed that the observed decreases in human biting rates in the wet season could be entirely explained by decreases in survival rates, suggesting that decreased breeding did not occur in the wet season, at the sites where adult mosquitoes were collected. For the first time in the literature, multivariate methods detected a statistically significant inverse relation (P<0.05) between the number of rainy days per month and daily survival rates, suggesting that rainfall may cause adult mortality.  相似文献   

20.
Currently, there is a strong trend towards increasing insecticide-based vector control coverage in malaria endemic countries. The ecological consequence of insecticide applications has been mainly studied regarding the selection of resistance mechanisms; however, little is known about their impact on vector competence in mosquitoes responsible for malaria transmission. As they have limited toxicity to mosquitoes owing to the selection of resistance mechanisms, insecticides may also interact with pathogens developing in mosquitoes. In this study, we explored the impact of insecticide exposure on Plasmodium falciparum development in insecticide-resistant colonies of Anopheles gambiae s.s., homozygous for the ace-1 G119S mutation (Acerkis) or the kdr L1014F mutation (Kdrkis). Exposure to bendiocarb insecticide reduced the prevalence and intensity of P. falciparum oocysts developing in the infected midgut of the Acerkis strain, whereas exposure to dichlorodiphenyltrichloroethane reduced only the prevalence of P. falciparum infection in the Kdrkis strain. Thus, insecticide resistance leads to a selective pressure of insecticides on Plasmodium parasites, providing, to our knowledge, the first evidence of genotype by environment interactions on vector competence in a natural Anopheles–Plasmodium combination. Insecticide applications would affect the transmission of malaria in spite of resistance and would reduce to some degree the impact of insecticide resistance on malaria control interventions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号