共查询到20条相似文献,搜索用时 15 毫秒
1.
The effect of pyridoxine deficiency on the metabolism of the aromatic amino acids by isolated rat liver cells 总被引:1,自引:0,他引:1
J C Stanley M Salter M J Fisher C I Pogson 《Archives of biochemistry and biophysics》1985,240(2):792-800
The total activity of three key enzymes and the flux through eight steps of aromatic amino acid metabolism have been determined in liver cells isolated from rats fed either control or pyridoxine-free diet for 5-6 weeks. The pyridoxine-free diet caused a decrease in the catabolism of tyrosine and phenylalanine because of a drop in the flux through tyrosine aminotransferase. This decrease of expressed cellular tyrosine aminotransferase activity can be fully explained in terms of loss of cofactor. Larger decreases in the catabolism of tryptophan were seen after pyridoxine deprivation. The decreased extent of tryptophan catabolism can be solely attributed to loss of cofactor or increased degradation of kynureninase. Inhibition of tryptophan 2,3-dioxygenase was seen in pyridoxine deficiency, probably because of the buildup of the kynurenine metabolites. The control strength of kynureninase, for flux through kynureninase, was calculated to be less than or equal to 0.004, but 0.41 after pyridoxine deprivation. The sensitivity of the three pathways to pyridoxine deprivation is interpreted and discussed in terms of the different affinities for pyridoxal phosphate and the control strengths of the pyridoxal phosphate-dependent enzymes, tyrosine aminotransferase and kynureninase. 相似文献
2.
Turner K 《The Biochemical journal》1930,24(5):1327-1336
3.
Isolated liver cells prepared from starved sheep converted palmitate into ketone bodies at twice the rate seen with cells from fed animals. Carnitine stimulated palmitate oxidation only in liver cells from fed sheep, and completely abolished the difference between fed and starved animals in palmitate oxidation. The rates of palmitate oxidation to CO2 and of octanoate oxidation to ketone bodies and CO2 were not affected by starvation or carnitine. Neither starvation nor carnitine altered the ratio of 3-hydroxybutyrate to acetoacetate or the rate of esterification of [1-14C]palmitate. Propionate, lactate, pyruvate and fructose inhibited ketogenesis from palmitate in cells from fed sheep. Starvation or the addition of carnitine decreased the antiketogenic effectiveness of gluconeogenic precursors. Propionate was the most potent inhibitor of ketogenesis, 0.8 mM producing 50% inhibition. Propionate, lactate, fructose and glycerol increased palmitate esterification under all conditions examined. Lactate, pyruvate and fructose stimulated oxidation of palmitate and octanoate to CO2. Starvation and the addition of gluconeogenic precursors stimulated apparent palmitate utilization by cells. Propionate, lactate and pyruvate decreased cellular long-chain acylcarnitine concentrations. Propionate decreased cell contents of CoA and acyl-CoA. It is suggested that propionate may control hepatic ketogenesis by acting at some point in the beta-oxidation sequence. The results are discussed in relation to the differences in the regulation of hepatic fatty acid metabolism between sheep and rats. 相似文献
4.
5.
6.
1. The metabolism of even-numbered saturated (acetic acid to stearic acid) and unsaturated (oleic acid and linolenic acid) fatty acids by diaphragms of isolated rumen epithelium has been investigated. 2. When fatty acids are presented to the papillae surface, ketone bodies are released from the opposite (muscle) side of the tissue. 3. When the concentration of octanoate or decanoate is increased to a critical value, which varies inversely with the chain length of the fatty acid, the respiration of the tissue is inhibited and ketone body synthesis is diminished. Under these conditions unmetabolized fatty acid crosses the tissue down a concentration gradient. 4. The inhibitions by octanoate and decanoate are more marked when the fatty acid is presented to both surfaces of the rumen epithelium. 5. During the oxidation of octanoate and decanoate at non-inhibitory concentrations, small quantities of shorter chain fatty acids, including acetate, are produced. 相似文献
7.
8.
Oxidative metabolism of long-chain fatty acids in mitochondria from sheep and rat liver. Evidence that sheep conserve linoleate by limiting its oxidation.
下载免费PDF全文

Mitochondria isolated from the livers of sheep and rats were shown to oxidize palmitate, oleate and linoleate in a tightly coupled manner, by monitoring the oxygen consumption associated with the degradation of these acids in the presence of 2mM-L-malate. Rat liver mitochondria oxidized linoleate and oleate at a rate 1.2-1.8 times that of palmitate. Sheep liver mitochondria had a specific activity for the oxidation of palmitate that was 50-80% of that of rats and a specific activity for the oxidation of oleate and linoleate that was 30-40% that of rats. This would indicate that sheep conserved linoleate by limiting its oxidation. Carnitine acyltransferase I (CAT I) actively esterified palmitoyl-CoA and linoleate to carnitine in both rat and sheep liver mitochondria, and in both cases the rate for linoleate was faster than for palmitate. The CAT I reaction in both rat and sheep liver was inhibited by micromolar amounts of malonyl-CoA. With 90 microM-palmitoyl-CoA as substrate, CAT I was inhibited by 50% with 2.5 microM-malonyl-CoA in rats, and in sheep, 50% inhibition was found with all malonyl-CoA concentrations tested (1-5 microM). With 90 microM-linoleate as substrate for CAT I, a much larger difference in response to malonyl-CoA was seen, the rat enzyme being 50% inhibited at 22 microM-malonyl-CoA, whereas sheep liver CAT I was 91% and 98% inhibited at 1 microM- and 5 microM-malonyl-CoA respectively. We propose that malonyl-CoA may act as an important regulator of beta-oxidation in sheep, discriminating against the use of linoleate as an energy-yielding substrate. 相似文献
9.
10.
11.
12.
13.
14.
15.
16.
17.
Kinetics of transport and metabolism of bromosulfophthalein have been studied in isolated liver cells in a dose-dependent manner obtaining the following results. The disposition of bromosulfophthalein in suspensions of isolated liver cells is similar to the turnover in the whole liver. The initial maximal rate of uptake of bromosulfophthalein is 2--3 times faster than intracellular conjugation with glutathione. Conjugation proceeds to an equilibrium between intracellular substrate (bromosulfophthalein) and product (bromosulfophthalein-glutathione conjugate) which are both transiently accumulated in the cell. Formation of bromosulfophthalein-glutathione is accompanied by an equimolar decrease of glutathione. The bromosulfophthalein-glutathione conjugate is slowly released from the cells in an energy-dependent and saturable transport process. The maximal velocity of excretion amounts to only 6% of the maximal velocity of uptake and to 20% of the maximal velocity of conjugation. Excretion, therefore, represents the slowest step in the overall turnover. 相似文献
18.
19.
The effects of alkylthioacetic acids (3-thia fatty acids) on fatty acid metabolism in isolated hepatocytes 总被引:1,自引:0,他引:1
Long-chain alkylthioacetic acids (3-thia fatty acids) inhibit fatty acid synthesis from [1-14C]acetate in isolated hepatocytes, while fatty acid oxidation is nearly unaffected or even stimulated. Desaturation of [1-14C]stearate (delta 9-desaturase) is also unaffected. [1-14C]Dodecylthioacetic acid (a 3-thia fatty acid) is incorporated in triacylglycerol and in phospholipids more efficiently than [1-14C]palmitate in isolated hepatocytes. The metabolism of [1-14C]dodecylthioacetic acid to acid-soluble products (by omega-oxidation) is slow compared to the oxidation of [1-14C]palmitate. In hepatocytes from adapted rats (rats fed tetradecylthioacetic acid for 4 days) the rate of [1-14C]palmitate oxidation is increased and its rate of esterification is decreased. Stearate desaturation is also decreased. The rate of cyanide-insensitive peroxisomal fatty acid beta-oxidation is several-fold increased. The metabolic effects of long-chain 3-thia fatty acids are discussed and it is concluded that they behave essentially like normal fatty acids except for their slow breakdown due to the sulfur atom in the 3 position, which blocks normal beta-oxidation. 相似文献
20.
Maria Y.C. Wu-Rideout Charles Elson Earl Shrago 《Biochemical and biophysical research communications》1976,71(3):809-816
In isolated rat hepatocytes flavaspidic acid, a competitor with free fatty acids for the fatty-acid-binding-protein, decreased the uptake of oleic acid and triglyceride synthesis but stimulated the formation of CO2 and ketone bodies from oleic acid. Flavaspidic acid had no effect on the utilization of octanoic acid. Stimulation of the microsomal fatty-acid-activating enzyme by the fatty-acid-binding protein was reversed by flavaspidic acid. In contrast, the binding protein inhibited the mitochondrial fatty-acid-activating enzyme. Flavaspidic acid not only prevented this inhibition but actually stimulated the enzyme activity. The results indicate that the cytosol fatty-acid-binding protein directs the metabolism of long chain fatty acids toward esterification as well as enhancing their cellular uptake. 相似文献