首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 968 毫秒
1.
2.
3.
Ribosomes are trapped at the 3′ ends of mRNAs that lack a natural stop codon. In bacteria, a reaction called trans-translation recycles ribosomes entrapped at such ‘non-stop’ mRNAs. The main player in trans-translation is tmRNA (SsrA-RNA), a bi-functional RNA that acts as both a tRNA and an mRNA. In the trans-translation reaction, alanine-charged tmRNA loads at the ribosomal A-site and translation shifts to the resume codon in tmRNA. Translation of tmRNA stops at a natural stop codon at the end of the small reading frame of tmRNA. In this way, the reaction simultaneously adds a peptide tag to the end of the nascent, incomplete polypeptide and recycles the stalled ribosomes. The peptide tag is recognized by cellular proteases that rapidly degrade the incomplete, potentially harmful polypeptides. The trans-translation reaction is not essential in most bacteria, raising the possibility that ribosomes stalled at non-stop mRNAs can be rescued by alternative routes. In this issue of Molecular Microbiology, Chadani et al. show that a novel translation factor, ArfA, can recycle a ribosome trapped at the 3′ end of a non-stop mRNA in the absence of trans-translation. AfrA is essential in the absence of tmRNA, showing that the two systems work in parallel to resolve stalled ribosomes.  相似文献   

4.
5.
Although trans-translation mediated by tmRNA-SmpB has long been known as the sole system to relieve bacterial stalled ribosomes, ArfA has recently been identified as an alternative factor for ribosome rescue in Escherichia coli. This process requires hydrolysis of nascent peptidyl-tRNA by RF2, which usually acts as a stop codon-specific peptide release factor. It poses a fascinating question of how ArfA and RF2 recognize and rescue the stalled ribosome. Here, we mapped the location of ArfA in the stalled ribosome by directed hydroxyl radical probing. It revealed an ArfA-binding site around the neck region of the 30S subunit in which the N- and C-terminal regions of ArfA are close to the decoding center and the mRNA entry channel, respectively. ArfA and RF2 sequentially enter the ribosome stalled in either the middle or 3′ end of mRNA, whereas RF2 induces a productive conformational change of ArfA only when ribosome is stalled at the 3′ end of mRNA. On the basis of these results, we propose that ArfA functions as the sensor to recognize the target ribosome after RF2 binding.  相似文献   

6.
During translation in Escherichia coli, the ribosome rescue factor YaeJ and the alternative ribosome rescue factor (ArfA, previously called YhdL) can release stalled ribosomes from mRNA. Here, I used a reconstituted cell-free protein synthesis system to examine YaeJ- and ArfA-dependent recycling of stalled ribosomes, in which mRNA lacks in-frame stop codons. It is shown that YaeJ alone could recycle the ribosome but that ArfA required the presence of release factor 2 (RF2). Furthermore, I show that RF2 binds to stalled ribosomes only in the presence of ArfA, demonstrating that ArfA recruits RF2 into the A site of the ribosome to facilitate peptidyl-tRNA hydrolysis. It is also demonstrated that the efficiency of the ArfA-dependent process decreases rapidly with an increase in mRNA length downstream of the A site of the ribosome whereas YaeJ function is maintained on mRNA with sufficient length. From the results, I discuss differences of in vivo roles of these two systems in addition to the well-known tmRNA-dependent trans-translation system.  相似文献   

7.
8.
周海燕  吴永尧  陈建红  曾分有  田云 《遗传》2006,28(8):1051-1054
反式翻译是细菌体内一种修复翻译水平上受阻的遗传信息表达过程的机制。tmRNA是反式翻译的核心分子,它兼具tRNA和mRNA的特点,在SmpB蛋白的帮助下特异性识别携带mRNA缺失体的核糖体,在核糖体蛋白S1的传递作用下结合在A位点上,一方面延续被中断的mRNA上的遗传信息,一方面终止蛋白质的合成,释放被束缚的核糖体和tRNA进入新的翻译过程。本文对近年来关于反式翻译模型的研究进行综述。  相似文献   

9.
Ribosome stalling is an important incident enabling the cellular quality control machinery to detect aberrant mRNA. Saccharomyces cerevisiae Hbs1-Dom34 and Ski7 are homologs of the canonical release factor eRF3-eRF1, which recognize stalled ribosomes, promote ribosome release, and induce the decay of aberrant mRNA. Polyadenylated nonstop mRNA encodes aberrant proteins containing C-terminal polylysine segments which cause ribosome stalling due to electrostatic interaction with the ribosomal exit tunnel. Here we describe a novel mechanism, termed premature translation termination, which releases C-terminally truncated translation products from ribosomes stalled on polylysine segments. Premature termination during polylysine synthesis was abolished when ribosome stalling was prevented due to the absence of the ribosomal protein Asc1. In contrast, premature termination was enhanced, when the general rate of translation elongation was lowered. The unconventional termination event was independent of Hbs1-Dom34 and Ski7, but it was dependent on eRF3. Moreover, premature termination during polylysine synthesis was strongly increased in the absence of the ribosome-bound chaperones ribosome-associated complex (RAC) and Ssb (Ssb1 and Ssb2). On the basis of the data, we suggest a model in which eRF3-eRF1 can catalyze the release of nascent polypeptides even though the ribosomal A-site contains a sense codon when the rate of translation is abnormally low.  相似文献   

10.
The trans-translation system in bacteria promotes recycling of stalled ribosomes and targets incomplete peptides for proteolysis. In Escherichia coli, loss of trans-translation function has little effect on growth under normal laboratory conditions. Among the subtle phenotypes of tmRNA-deficient mutants is the inability to plate certain lambda imm(P22) phages. This phenotype is dependent on the ribosome recycling functions of the trans-translation system but is independent of its proteolysis-targeting activity. The experiments described here show that translation of the first (resume) codon of the tmRNA open reading frame by a tRNA is both necessary and sufficient for ribosome recycling. While a variety of sense codons can replace the naturally-occurring GCA alanine codon as the resume codon, both AAA and AAG lysine codons are non-functional resume codons. These results suggest that the main function of tmRNA in releasing stalled ribosomes is to supply a stop codon and so facilitate termination and subsequent ribosome recycling.  相似文献   

11.
tmRNA (transfer messenger RNA) is a unique molecule used by all bacteria to rescue stalled ribosomes and to mark unfinished peptides with a specific degradation signal. tmRNA is recruited by arrested ribosomes in which it facilitates the translational switch from cellular mRNA to the mRNA part of tmRNA. Small protein B (SmpB) is a key partner for the trans-translation activity of tmRNA both in vivo and in vitro. It was shown that SmpB acts at the initiation step of the trans-translation process by facilitating tmRNA aminoacylation and binding to the ribosome. Little is known about the subsequent steps of trans-translation. Here we demonstrated the first example of an investigation of tmRNA.ribosome complexes at different stages of trans-translation. Our results show that the structural element at the position of tmRNA pseudoknot 3 remains intact during the translation of the mRNA module of tmRNA and that it is localized on the surface of the ribosome. At least one SmpB molecule remains bound to a ribosome.tmRNA complex isolated from the cell when translation is blocked at different positions within the mRNA part of tmRNA.  相似文献   

12.
Abo T  Inada T  Ogawa K  Aiba H 《The EMBO journal》2000,19(14):3762-3769
SsrA RNA of Escherichia coli, also known as 10Sa RNA or tmRNA, acts both as tRNA and mRNA when ribosomes are paused at the 3' end of an mRNA lacking a stop codon. This process, referred to as trans-translation, leads to the addition of a short peptide tag to the C-terminus of the incomplete nascent polypeptide. The tagged polypeptide is then degraded by C-terminal-specific proteases. Here, we focused on endogenous targets for the SsrA system and on a potential regulatory role of SsrA RNA. First, we show that trans-translation events occur frequently in normally growing E. COLI: cells. More specifically, we report that the lacI mRNA encoding Lac repressor (LacI) is a specific natural target for trans-translation. The binding of LacI to the lac operators results in truncated lacI mRNAs that are, in turn, recognized by the SsrA system. The SsrA-mediated tagging and proteolysis of LacI appears to play a role in cellular adaptation to lactose availability by supporting a rapid induction of lac operon expression.  相似文献   

13.
The translation machinery deciphers genetic information encoded within mRNAs to synthesize proteins needed for various cellular functions. Defective mRNAs that lack in-frame stop codons trigger non-productive stalling of ribosomes. We investigated how cells deal with such defective mRNAs, and present evidence to demonstrate that RNase R, a processive 3'-to-5' exoribonuclease, is recruited to stalled ribosomes for the specific task of degrading defective mRNAs. The recruitment process is selective for non-stop mRNAs and is dependent on the activities of SmpB protein and tmRNA. Most intriguingly, our analysis reveals that a unique structural feature of RNase R, the C-terminal lysine-rich (K-rich) domain, is required both for productive ribosome engagement and targeted non-stop mRNA decay activities of the enzyme. These findings provide new insights into how a general RNase is recruited to the translation machinery and highlight a novel role for the ribosome as a platform for initiating non-stop mRNA decay.  相似文献   

14.
To rescue stalled ribosomes, eubacteria employ a molecule, transfer messenger RNA (tmRNA), which functions both as a tRNA and as an mRNA. With the help of small protein B (SmpB), tmRNA restarts protein synthesis and adds by the trans-translation mechanism a peptide tag to the stalled protein to target it for destruction by cellular proteases. Here, the cellular location and expression of endogenous SmpB were monitored in vivo. We report that SmpB is associated with 70S ribosomes and not in the soluble fraction, independently of the presence of tmRNA. In vitro, SmpB that is pre-bound to a stalled ribosome can trigger initiation of trans-translation. Our results demonstrate the existence of a novel pathway for the entry of tmRNA to the ribosome and for the trans-transfer of a nascent peptide chain from peptidyl-tRNA to charged tmRNA.  相似文献   

15.
A ribosome stalled on a truncated mRNA in the eubacterial cell can be rescued by tmRNA via a process called trans-translation. We demonstrate here that release of truncated mRNAs from stalled ribosomes accelerates significantly already after trans-peptidation following tmRNA binding to the ribosome. However, rapid release of truncated mRNA requires EF-G-dependent translocation of peptidyl-tmRNA from the A to the P site of the ribosome. We show also that the rate of mRNA release before and after peptidyl-tmRNA translocation correlates well with the rate of dissociation of deacylated tRNA, indicating that mRNA is retained on the ribosome mainly through codon:anticodon interaction with tRNA. The rate of mRNA release is reduced for mRNAs with strong Shine-Dalgarno (SD)-like sequences in the vicinity of the truncation site as well as for mRNAs with long 3' extensions downstream from the P-site codon. The reduced rate of release in the former case was due to a persisting SD-anti SD interaction between mRNA and the ribosome.  相似文献   

16.
In bacteria, ribosomes often become stalled and are released by a trans-translation process mediated by transfer-messenger RNA (tmRNA). In the absence of tmRNA, however, there is evidence that stalled ribosomes are released from non-stop mRNAs. Here, we show a novel ribosome rescue system mediated by a small basic protein, YaeJ, from Escherichia coli, which is similar in sequence and structure to the catalytic domain 3 of polypeptide chain release factor (RF). In vitro translation experiments using the E. coli-based reconstituted cell-free protein synthesis system revealed that YaeJ can hydrolyze peptidyl–tRNA on ribosomes stalled by both non-stop mRNAs and mRNAs containing rare codon clusters that extend downstream from the P-site and prevent Ala-tmRNA•SmpB from entering the empty A-site. In addition, YaeJ had no effect on translation of a normal mRNA with a stop codon. These results suggested a novel tmRNA-independent rescue system for stalled ribosomes in E. coli. YaeJ was almost exclusively found in the 70S ribosome and polysome fractions after sucrose density gradient sedimentation, but was virtually undetectable in soluble fractions. The C-terminal basic residue-rich extension was also found to be required for ribosome binding. These findings suggest that YaeJ functions as a ribosome-attached rescue device for stalled ribosomes.  相似文献   

17.
18.
Translational pausing can lead to cleavage of the A-site codon and facilitate recruitment of the transfer-messenger RNA (tmRNA) (SsrA) quality control system to distressed ribosomes. We asked whether aminoacyl-tRNA binding site (A-site) mRNA cleavage occurs during regulatory translational pausing using the Escherichia coli SecM-mediated ribosome arrest as a model. We find that SecM ribosome arrest does not elicit efficient A-site cleavage, but instead allows degradation of downstream mRNA to the 3'-edge of the arrested ribosome. Characterization of SecM-arrested ribosomes shows the nascent peptide is covalently linked via glycine 165 to tRNA(3Gly) in the peptidyl-tRNA binding site, and prolyl-tRNA(2Pro) is bound to the A-site. Although A-site-cleaved mRNAs were not detected, tmRNA-mediated ssrA tagging after SecM glycine 165 was observed. This tmRNA activity results from sequestration of prolyl-tRNA(2Pro) on overexpressed SecM-arrested ribosomes, which produces a second population of stalled ribosomes with unoccupied A-sites. Indeed, compensatory overexpression of tRNA(2Pro) readily inhibits ssrA tagging after glycine 165, but has no effect on the duration of SecM ribosome arrest. We conclude that, under physiological conditions, the architecture of SecM-arrested ribosomes allows regulated translational pausing without interference from A-site cleavage or tmRNA activities. Moreover, it seems likely that A-site mRNA cleavage is generally avoided or inhibited during regulated ribosome pauses.  相似文献   

19.
Saguy M  Gillet R  Metzinger L  Felden B 《Biochimie》2005,87(9-10):897-903
Translation is an efficient and accurate mechanism, needing thorough systems of control-quality to ensure the correspondence between the information carried by the messenger RNA (mRNA) and the newly synthesized protein. Among them, trans-translation ensures delivering of stalled ribosomes when translation occurs on truncated mRNAs in bacteria, followed by the degradation of the incomplete nascent proteins. This process requires transfer-messenger RNA (tmRNA), an original molecule acting as both a tRNA and an mRNA. tmRNA first enters the decoding site of stuck ribosomes and, despite the lack of any codon-anticodon interaction, acts as a tRNA by transferring its alanine to the incomplete protein. Translation then switches to a small internal coding sequence (mRNA domain), which encodes a tag directing the incomplete protein towards degradation. Although playing a central role during trans-translation, tmRNA function depends on associated proteins. Genetic, biochemical and recent structural data are starting to unravel how the process takes place, by involving three main protein partners. Small protein B (SmpB) interacts with the tRNA-like domain (TLD) of tmRNA and is indispensable and specific to the process. Elongation factor Tu (EF-Tu) binds simultaneously the TLD and brings aminoacylated tmRNA to the ribosome, as for canonical tRNAs. Ribosomal protein S1 forms complexes with tmRNA, facilitating its recruitment by the stalled ribosomes. The chronology of events, however, is poorly understood and recent data shed light on the functions attributed to the proteins involved in trans-translation. This review focuses on the puzzling relationship that tmRNA has with these three protein ligands, putting forward trans-translation as a highly dynamical process.  相似文献   

20.
Transfer-messenger RNA (tmRNA) mimics functions of aminoacyl-tRNA and mRNA, subsequently, when rescuing stalled ribosomes on a 3' truncated mRNA without stop codon in bacteria. In addition, this mechanism marks prematurely terminated proteins by a C-terminal peptide tag as a signal for degradation by specific cellular proteases. For Escherichia coli, previous studies on initial steps of this "trans-translation" mechanism revealed that tmRNA alanylation by Ala-tRNA synthetase and binding of Ala-tmRNA by EF-Tu-GTP for subsequent delivery to stalled ribosomes are inefficient when compared to analogous reactions with canonical tRNA(Ala). In other studies, protein SmpB and ribosomal protein S1 appeared to bind directly to tmRNA and to be indispensable for trans-translation. Here, we have searched for additional and synergistic effects of the latter two on tmRNA alanylation and its subsequent binding to EF-Tu-GTP. Kinetic analysis of functioning combined with band-shift experiments and structural probing demonstrate, that tmRNA may indeed form a multimeric complex with SmpB, S1 and EF-Tu-GTP, which leads to a considerably enhanced efficiency of the initial steps of trans-translation. Whereas S1 binds to the mRNA region of tmRNA, we have found that SmpB and EF-Tu both interact with its acceptor arm region. Interaction with SmpB and EF-Tu was also observed at the acceptor arm of Ala-tRNA(Ala), but there the alanylation efficiency was inhibited rather than stimulated by SmpB. Therefore, SmpB may function as an essential modulator of the tRNA-like acceptor arm of tmRNA during its successive steps in trans-translation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号