首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Gene duplications are one of the most important mechanisms for the origin of evolutionary novelties. Even though various models of the fate of duplicated genes have been established, current knowledge about the role of divergent selection after gene duplication is rather limited. In this study, we analyzed sequence divergence in response to neo- and subfunctionalization of segmentally duplicated genes in the genome of Arabidopsis thaliana. We compared the genomes of A. thaliana and the poplar Populus trichocarpa to identify orthologous pairs of genes and their corresponding inparalogs. Maximum-likelihood analyses of the nonsynonymous and synonymous substitution rate ratio [Formula: see text] of pairs of A. thaliana inparalogs were used to detect differences in the evolutionary rates of protein coding sequences. We analyzed 1,924 A. thaliana paralogous pairs and our results indicate that around 6.9% show divergent ω values between the lineages for a fraction of sites. We observe an enrichment of regulatory sequences, a reduced level of co-expression and an increased number of substitutions that can be attributed to positive selection based on an McDonald-Kreitman type of analysis. Taken together, these results show that selection after duplication contributes substantially to gene novelties and hence functional divergence in plants.  相似文献   

2.
The LMP7 and PSMB5 genes were created through an ancient gene duplication event of their ancestral locus. These proteins contain an active site of proteolysis, and LMP7 replaces PSMB5 as a component of the 20S proteasome after stimulation of cells by interferon-. Replacement of PSMB5 by LMP7 changes the profile of the products of 20S proteasome processing, predisposing digested peptides for transport to and display by the immune system. The purpose of this study is to investigate evolutionary forces influencing functional divergence between LMP7 and PSMB5 following duplication. Levels of synonymous and nonsynonymous substitution rates are estimated to infer differences in levels of natural selection. Estimates of substitution rates indicate that natural selection elevated rates of nonsynonymous substitution in LMP7 following gene duplication, whereas PSMB5 experienced an increase in substitution rate that was not likely due to diversifying natural selection following duplication. Following initial divergence, nearly neutral mutations have dominated gene evolution in both lineages. The LMP7 gene locus provides a rare example of a protein with specialized function arising from duplication and divergence of a housekeeping protein by way of natural selection.Reviewing Editor: Dr. Rasmus Nielsen  相似文献   

3.
Gene duplication is an important evolutionary mechanism that can result in functional divergence in paralogs due to neo-functionalization or sub-functionalization. Consistent with functional divergence after gene duplication, recent studies have shown accelerated evolution in retained paralogs. However, little is known in general about the impact of this accelerated evolution on the molecular functions of retained paralogs. For example, do new functions typically involve changes in enzymatic activities, or changes in protein regulation? Here we study the evolution of posttranslational regulation by examining the evolution of important regulatory sequences (short linear motifs) in retained duplicates created by the whole-genome duplication in budding yeast. To do so, we identified short linear motifs whose evolutionary constraint has relaxed after gene duplication with a likelihood-ratio test that can account for heterogeneity in the evolutionary process by using a non-central chi-squared null distribution. We find that short linear motifs are more likely to show changes in evolutionary constraints in retained duplicates compared to single-copy genes. We examine changes in constraints on known regulatory sequences and show that for the Rck1/Rck2, Fkh1/Fkh2, Ace2/Swi5 paralogs, they are associated with previously characterized differences in posttranslational regulation. Finally, we experimentally confirm our prediction that for the Ace2/Swi5 paralogs, Cbk1 regulated localization was lost along the lineage leading to SWI5 after gene duplication. Our analysis suggests that changes in posttranslational regulation mediated by short regulatory motifs systematically contribute to functional divergence after gene duplication.  相似文献   

4.
The relaxin gene family is a group of genes involved in different physiological roles, most of them related to reproduction. In vertebrates the genes in this family are located in three separate chromosomal locations, and have been called relaxin family locus (RFL) A, B, and C. Among mammals the RFLA and RFLC are the most conserved as no gene copy-number variation has been observed thus far. The RFLB locus is also conserved on most mammals other than primates, where there are several gene gains and losses. Interestingly, the relaxin gene found on the RFLB locus in the European rabbit has acquired a novel role. In addition to the classical reproductive roles, this gene is expressed in tracheobronchial epithelial cells and its expression has been linked to squamous differentiation. We reconstructed the evolutionary history of the European rabbit RFLB locus using the tools of comparative genomics and molecular evolution. We found that the European rabbit possess a RFLB locus which is unique among mammals in that there are five tandemly arranged relaxin gene copies, which contrast with the single relaxin copy gene found in most mammals. In addition we also found that the ancestral pre-duplication gene was subject to the action of positive selection, and several amino acid sites were identified under the action of natural selection including the sites B12 and B13 which are part of the receptor recognition and binding site.  相似文献   

5.
吕山花  孟征 《植物学报》2007,24(1):60-70
基因的重复(duplication)及其功能的多样性(diversification)为生物体新的形态进化提供了原材料。MADS-box基因在植物(特别是被子植物)的进化过程中发生了大规模的基因重复事件而形成一个多基因家族。MADS-box基因家族的不同成员在植物生长发育过程中起着非常重要的作用, 在调控开花时间、决定花分生组织和花器官特征以及调控根、叶、胚珠及果实的发育中起着广泛的作用。探讨MADS-box基因家族的进化历史有助于深入了解基因重复及随后其功能分化的过程和机制。本文综述了MADS-box基因家族基因重复及其功能分化式样的研究进展。  相似文献   

6.
MADS-box基因家族基因重复及其功能的多样性   总被引:7,自引:0,他引:7  
基因的重复(duplication)及其功能的多样性(diversification)为生物体新的形态进化提供了原材料。MADS-box基因在植物(特别是被子植物)的进化过程中发生了大规模的基因重复事件而形成一个多基因家族。MADS-box基因家族的不同成员在植物生长发育过程中起着非常重要的作用,在调控开花时间、决定花分生组织和花器官特征以及调控根、叶、胚珠及果实的发育中起着广泛的作用。探讨MADS-box基因家族的进化历史有助于深入了解基因重复及随后其功能分化的过程和机制。本文综述了MADS-box基因家族基因重复及其功能分化式样的研究进展。  相似文献   

7.
Interspecific hybrid lethality and sterility are a consequence of divergent evolution between species and serve to maintain the discrete identities of species. The evolution of hybrid incompatibilities has been described in widely accepted models by Dobzhansky and Muller where lineage-specific functional divergence is the essential characteristic of hybrid incompatibility genes. Experimentally tractable models are required to identify and test candidate hybrid incompatibility genes. Several Drosophila melanogaster genes involved in hybrid incompatibility have been identified but none has yet been shown to have functionally diverged in accordance with the Dobzhansky-Muller model. By introducing transgenic copies of the X-linked Hybrid male rescue (Hmr) gene into D. melanogaster from its sibling species D. simulans and D. mauritiana, we demonstrate that Hmr has functionally diverged to cause F1 hybrid incompatibility between these species. Consistent with the Dobzhansky-Muller model, we find that Hmr has diverged extensively in the D. melanogaster lineage, but we also find extensive divergence in the sibling-species lineage. Together, these findings implicate over 13% of the amino acids encoded by Hmr as candidates for causing hybrid incompatibility. The exceptional level of divergence at Hmr cannot be explained by neutral processes because we use phylogenetic methods and population genetic analyses to show that the elevated amino-acid divergence in both lineages is due to positive selection in the distant past—at least one million generations ago. Our findings suggest that multiple substitutions driven by natural selection may be a general phenomenon required to generate hybrid incompatibility alleles.  相似文献   

8.
Melanopsin is a photosensitive cell protein involved in regulating circadian rhythms and other non-visual responses to light. The melanopsin gene family is represented by two paralogs, OPN4x and OPN4m, which originated through gene duplication early in the emergence of vertebrates. Here we studied the melanopsin gene family using an integrated gene/protein evolutionary approach, which revealed that the rhabdomeric urbilaterian ancestor had the same amino acid patterns (DRY motif and the Y and E conterions) as extant vertebrate species, suggesting that the mechanism for light detection and regulation is similar to rhabdomeric rhodopsins. Both OPN4m and OPN4x paralogs are found in vertebrate genomic paralogons, suggesting that they diverged following this duplication event about 600 million years ago, when the complex eye emerged in the vertebrate ancestor. Melanopsins generally evolved under negative selection (ω = 0.171) with some minor episodes of positive selection (proportion of sites = 25%) and functional divergence (θI = 0.349 and θII = 0.126). The OPN4m and OPN4x melanopsin paralogs show evidence of spectral divergence at sites likely involved in melanopsin light absorbance (200F, 273S and 276A). Also, following the teleost lineage-specific whole genome duplication (3R) that prompted the teleost fish radiation, type I divergence (θI = 0.181) and positive selection (affecting 11% of sites) contributed to amino acid variability that we related with the photo-activation stability of melanopsin. The melanopsin intracellular regions had unexpectedly high variability in their coupling specificity of G-proteins and we propose that Gq/11 and Gi/o are the two G-proteins most-likely to mediate the melanopsin phototransduction pathway. The selection signatures were mainly observed on retinal-related sites and the third and second intracellular loops, demonstrating the physiological plasticity of the melanopsin protein group. Our results provide new insights on the phototransduction process and additional tools for disentangling and understanding the links between melanopsin gene evolution and the specializations observed in vertebrates, especially in teleost fish.  相似文献   

9.
Members of cytochrome P450 subfamily 1A (CYP1As) are involved in detoxification and bioactivation of common environmental pollutants. Understanding the functional evolution of these genes is essential to predicting and interpreting species differences in sensitivity to toxicity caused by such chemicals. The CYP1A gene subfamily comprises a single ancestral representative in most fish species and two paralogs in higher vertebrates, including birds and mammals. Phylogenetic analysis of complete coding sequences suggests that mammalian and bird paralog pairs (CYP1A1/2 and CYP1A4/5, respectively) are the result of independent gene duplication events. However, comparison of vertebrate genome sequences revealed that CYP1A genes lie within an extended region of conserved fine-scale synteny, suggesting that avian and mammalian CYP1A paralogs share a common genomic history. Algorithms designed to detect recombination between nucleotide sequences indicate that gene conversion has homogenized most of the length of the chicken CYP1A genes, as well as the 5′ end of mammalian CYP1As. Together, these data indicate that avian and mammalian CYP1A paralog pairs resulted from a single gene duplication event and that extensive gene conversion is responsible for the exceptionally high degree of sequence similarity between CYP1A4 and CYP1A5. Elevated nonsynonymous/synonymous substitution ratios within a putatively unconverted stretch of ∼250 bp suggests that positive selection may have reduced the effective rate of gene conversion in this region, which contains two substrate recognition sites. This work significantly alters our understanding of functional evolution in the CYP1A subfamily, suggesting that gene conversion and positive selection have been the dominant processes of sequence evolution. Electronic Supplementary Material Electronic Supplementary material is available for this article at and accessible for authorised users. [Reviewing Editor: Dr. Yves Van de Peer]  相似文献   

10.
Three proteinaceous pheromone families, the androgen-binding proteins (ABPs), the exocrine-gland secreting peptides (ESPs) and the major urinary proteins (MUPs) are encoded by large gene families in the genomes of Mus musculus and Rattus norvegicus. We studied the evolutionary histories of the Mup and Esp genes and compared them with what is known about the Abp genes. Apparently gene conversion has played little if any role in the expansion of the mouse Class A and Class B Mup genes and pseudogenes, and the rat Mups. By contrast, we found evidence of extensive gene conversion in many Esp genes although not in all of them. Our studies of selection identified at least two amino acid sites in β-sheets as having evolved under positive selection in the mouse Class A and Class B MUPs and in rat MUPs. We show that selection may have acted on the ESPs by determining Ka/Ks for Exon 3 sequences with and without the converted sequence segment. While it appears that purifying selection acted on the ESP signal peptides, the secreted portions of the ESPs probably have undergone much more rapid evolution. When the inner gene converted fragment sequences were removed, eleven Esp paralogs were present in two or more pairs with Ka/Ks >1.0 and thus we propose that positive selection is detectable by this means in at least some mouse Esp paralogs. We compare and contrast the evolutionary histories of all three mouse pheromone gene families in light of their proposed functions in mouse communication.  相似文献   

11.
The chaperonins, GroEL and GroES, are present ubiquitously and provide a paradigm in the understanding of assisted protein folding. Due to its essentiality of function, GroEL exhibits high sequence conservation across species. Complete genome sequencing has shown the occurrence of duplicate or multiple copies of groEL genes in bacteria such as Mycobacterium tuberculosis and Corynebacterium glutamicum. Monophyly of each bacterial clade in the phylogenetic tree generated for the GroEL protein suggests a lineage-specific duplication. The duplicated groEL gene in Actinobacteria is not accompanied by the operonic groES despite the presence of upstream regulatory elements. Our analysis suggests that in these bacteria the duplicated groEL genes have undergone rapid evolution and divergence to function in a GroES-independent manner. Evaluation of multiple sequence alignment demonstrates that the duplicated genes have acquired mutations at functionally significant positions including those involved in substrate binding, ATP binding, and GroES binding and those involved in inter-ring and intra-ring interactions. We propose that the duplicate groEL genes in different bacterial clades have evolved independently to meet specific requirements of each clade. We also propose that the groEL gene, although essential and conserved, accumulates nonconservative substitutions to exhibit structural and functional variations. Electronic Supplementary Material Electronic Supplementary material is available for this article at and accessible for authorised users. [Reviewing Editor: Dr. Debashish Bhattacharya]  相似文献   

12.
13.
Since genome size and the number of duplicate genes observed in genomes increase from haploid to diploid organisms, diploidy might provide more evolutionary probabilities through gene duplication. It is still unclear how diploidy promotes genomic evolution in detail. In this study, we explored the evolution of segmental gene duplication in haploid and diploid populations by analytical and simulation approaches. Results show that (1) under the double null recessive (DNR) selective model, given the same recombination rate, the evolutionary trajectories and consequences are very similar between the same-size gene-pool haploid vs. diploid populations; (2) recombination enlarges the probability of preservation of duplicate genes in either haploid or diploid large populations, and haplo-insufficiency reinforces this effect; and (3) the loss of duplicate genes at the ancestor locus is limited under recombination while under complete linkage the loss of duplicate genes is always random at the ancestor and newly duplicated loci. Therefore, we propose a model to explain the advantage of diploidy: diploidy might facilitate the increase of recombination rate, especially under sexual reproduction; more duplicate genes are preserved under more recombination by originalization (by which duplicate genes are preserved intact at a special quasi-mutation-selection balance under the DNR or haplo-insufficient selective model), so genome sizes and the number of duplicate genes in diploid organisms become larger. Additionally, it is suggested that small genomic rearrangements due to the random loss of duplicate genes might be limited under recombination.USUALLY genome size becomes larger from haploid to diploid organisms (Lynch and Conery 2003), and so does the number of duplicate genes observed in genomes (Zhang 2003). It is extensively hypothesized that diploidy might facilitate the preservation and accumulation of duplicate genes, but it is still unclear how diploidy supports the evolution of duplicate genes in detail. The superiority of diploidy is classically attributed to preventing expression of deleterious mutations (Crow and Kimura 1965), but it is also argued that the sheltering of deleterious mutations cannot adequately explain the advantages of diploidy (Perrot et al. 1991).Recombination is a common phenomenon in all three kingdoms of life, Bacteria, Eukarya, and Archaea. It has been reported that recombination influences the loss of duplicate genes (Zhang and Kishino 2004; Xue et al. 2010). In diploid organisms, if recombination between the ancestor locus and the newly duplicated locus is free, the rate of recombination is maximally 0.5, which is commonly observed especially when the two loci are located on different chromosomes. Although recombination should not be regarded as an exception in haploid organisms (Fraser et al. 2007), recombination events usually occur more frequently in diploid populations than they do in haploid populations. In other words, diploidy might facilitate the occurrence of recombination. The difference of recombination behaviors between haploid and diploid organisms is an obvious and important feature during genomic evolution.In our recent studies of genomic duplication, we proposed a new possible way of preserving and accumulating duplicate genes in genomes—originalization (Xue and Fu 2009a). As is well known, for a locus in an infinite diploid population, the frequencies of wild-type and degenerative alleles will move to an equilibrium under purifying selection and mutation, which is known as the mutation–selection balance. After genomic duplication, under two simple selective models, double null recessive (DNR, under which valid individuals require at least one active wild-type allele on the ancestor and newly duplicated loci) and haplo-insufficient (HI or partial dominant, under which valid individuals require at least two active wild-type alleles on both loci) models, a special equilibrium of allele frequencies at the ancestor and newly duplicated loci will be reached under recombination, in which the frequency of wild-type allele is kept high at both loci. Under the HI selective model this balance becomes so stable and flexible that the fixation of a degenerative allele at one of these two loci (or the balance being broken) becomes very difficult even in a modest population (Xue and Fu 2009a,b). However, if the two loci are tightly linked (recombination rate r = 0), this balance of allele frequencies does not appear. As r increases, the balance becomes more stable and the frequency of the wild-type allele at two loci becomes higher. High frequency of the wild-type allele at both loci means that duplicate genes are preserved intact in genomes, so this phenomenon was named originalization.Although many duplicate genes originated from genomic duplications in some species, such as yeast, maize, and fish (Li et al. 2005), those from segmental duplications are also very popular (Zhang et al. 2000; Leister 2004). In haploid populations, most duplication events are small segmental duplications. Therefore, to understand genomic evolution comprehensively, it is necessary to explore the evolution of segmental genomic duplication.Lynch et al. (2001) and Tanaka et al. (2009) have studied the evolution of segmental gene duplication in diploid populations theoretically. However, in this study, we further compared the evolution of segmental gene duplication in haploid vs. diploid populations by numerical and simulation approaches under the DNR and HI selective models. We observed that haploid and diploid populations with the same-size gene pool are very similar under the DNR model and the same recombination rate. Recombination enlarges the probability of preservation of duplicate genes in either haploid or diploid populations via originalization, and haplo-insufficiency reinforces this effect. The loss of duplicate genes at the ancestor locus might be limited under recombination, while under complete linkage, the loss of duplicate genes is random at the ancestor and newly duplicated loci. According to these results, we propose a model with which to explain the revolutionary genomic transition from haploidy to diploidy.  相似文献   

14.
15.

Background

Insulin-like growth factor binding protein-2 (IGFBP-2) is a secreted protein that binds and regulates IGF actions in controlling growth, development, reproduction, and aging. Elevated expression of IGFBP-2 is often associated with progression of many types of cancers.

Methodology/Principal Findings

We report the identification and characterization of two IGFBP-2 genes in zebrafish and four other teleost fish. Comparative genomics and structural analyses suggest that they are co-orthologs of the human IGFBP-2 gene. Biochemical assays show that both zebrafish igfbp-2a and -2b encode secreted proteins that bind IGFs. These two genes exhibit distinct spatiotemporal expression patterns. During embryogenesis, IGFBP-2a mRNA is initially detected in the lens, then in the brain boundary vasculature, and subsequently becomes highly expressed in the liver. In the adult stage, liver has the highest levels of IGFBP-2a mRNA, followed by the brain. Low levels of IGFBP-2a mRNA were detected in muscle and in the gonad in male adults only. IGFBP-2b mRNA is detected initially in all tissues at low levels, but later becomes abundant in the liver. In adult males, IGFBP-2b mRNA is only detected in the liver. In adult females, it is also found in the gut, kidney, ovary, and muscle. To gain insights into how the IGFBP-2 genes may have evolved through partitioning of ancestral functions, functional and mechanistic studies were carried out. Expression of zebrafish IGFBP-2a and -2b caused significant decreases in the growth and developmental rates and their effects are comparable to that of human IGFBP-2. IGFBP-2 mutants with altered IGF binding-, RGD-, and heparin-binding sites were generated and their actions examined. While mutating the RGD and heparin binding sites had little effect, altering the IGF binding site abolished its biological activity.

Conclusions/Significance

These results suggest that IGFBP-2 is a conserved regulatory protein and it inhibits growth and development primarily by binding to and inhibiting IGF actions in vivo. The duplicated IGFBP-2 genes may provide additional flexibility in the regulation of IGF activities.  相似文献   

16.
Female preference for male orange coloration in the genus Poecilia suggests a role for duplicated long wavelength-sensitive (LWS) opsin genes in facilitating behaviors related to mate choice in these species. Previous work has shown that LWS gene duplication in this genus has resulted in expansion of long wavelength visual capacity as determined by microspectrophotometry (MSP). However, the relationship between LWS genomic repertoires and expression of LWS retinal cone classes within a given species is unclear. Our previous study in the related species, Xiphophorus helleri, was the first characterization of the complete LWS opsin genomic repertoire in conjunction with MSP expression data in the family Poeciliidae, and revealed the presence of four LWS loci and two distinct LWS cone classes. In this study we characterized the genomic organization of LWS opsin genes by BAC clone sequencing, and described the full range of cone cell types in the retina of the colorful Cumaná guppy, Poecilia reticulata. In contrast to X. helleri, MSP data from the Cumaná guppy revealed three LWS cone classes. Comparisons of LWS genomic organization described here for Cumaná to that of X. helleri indicate that gene divergence and not duplication was responsible for the evolution of a novel LWS haplotype in the Cumaná guppy. This lineage-specific divergence is likely responsible for a third additional retinal cone class not present in X. helleri, and may have facilitated the strong sexual selection driven by female preference for orange color patterns associated with the genus Poecilia.  相似文献   

17.
A remarkable diversity of venom peptides is expressed in the genus Conus (known as “conotoxins” or “conopeptides”). Between 50 and 200 different venom peptides can be found in a single Conus species, each having its own complement of peptides. Conopeptides are encoded by a few gene superfamilies; here we analyze the evolution of the A-superfamily in a fish-hunting species clade, Pionoconus. More than 90 conopeptide sequences from 11 different Conus species were used to build a phylogenetic tree. Comparison with a species tree based on standard genes reveals multiple gene duplication events, some of which took place before the Pionoconus radiation. By analysing several A-conopeptides from other Conus species recorded in GenBank, we date the major duplication events after the divergence between fish-hunting and non-fish-hunting species. Furthermore, likelihood approaches revealed strong positive selection; the magnitude depends on which A-conopeptide lineage and amino-acid locus is analyzed. The four major A-conopeptide clades defined are consistent with the current division of the superfamily into families and subfamilies based on the Cys pattern. The function of three of these clades (the κA-family, the α4/7-subfamily, and α3/5-subfamily) has previously been characterized. The function of the remaining clade, corresponding to the α4/4-subfamily, has not been elucidated. This subfamily is also found in several other fish-hunting species clades within Conus. The analysis revealed a surprisingly diverse origin of α4/4 conopeptides from a single species, Conus bullatus. This phylogenetic approach that defines different genetic lineages of Conus venom peptides provides a guidepost for identifying conopeptides with potentially novel functions.  相似文献   

18.
19.
20.
Abstract A general correlation between neural expression and negative charge in isozymes suggests charge represents an adaptation to the neural environment. Interestingly, a notable exception exists in teleost fish. Two cytosolic malate dehydrogenase (MDH) isozymes have different spatial expression patterns in certain fishes: one is expressed in all tissues and the second is expressed primarily in the eye and skeletal muscle. While the neural MDH isozyme is negatively charged, the difference in charge between the two isozymes is not as pronounced as that observed in other gene families (e.g., triosephosphate isomerase and lactate dehydrogenase). Most tetrapods express a single cytosolic MDH isozyme, and it has been demonstrated recently that the pair of isozymes found in teleosts results from a gene duplication sometime after the separation of teleosts and tetrapods, although the exact timing of this duplication has not been inferred. Phylogenetic analyses suggest that the duplication of teleost isozymes occurred during the radiation of actinopterygian fish, consistent with the timing of duplication at other loci. Using inferred amino acid sequences, we examine the pattern of change following the duplication and across the rest of the MDH gene tree. Comparison between the MDH gene family and another gene family that shows a larger charge differential among members (triosephosphate isomerase) indicates that the smaller charge difference between MDH isozymes is best explained by greater constraint on amino acid change directly following the duplication, not greater constraint across the entire gene tree. This difference in constraint might result from the wider pattern of expression of the “neural” MDH isozyme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号