首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 524 毫秒
1.
An enzymatic assay adapted to photometric analysis with 96-well microplates was evaluated for the measurement of 2-deoxyglucose (2DG) uptake in insulin-responsive tissues and differentiated 3T3-L1 adipocytes. For in vivo measurements, a small amount of nonradiolabeled 2DG was injected into mice without affecting glucose metabolism. For photometric quantification of the small amount of 2-deoxyglucose 6-phosphate (2DG6P) that accumulates in cells, we introduced glucose-6-phosphate dehydrogenase, glutathione reductase, and 5,5′-dithiobis(2-nitrobenzoic acid) to the recycling amplification reaction of NADPH. We optimized the enzyme reaction for complete oxidation of endogenous glucose 6-phosphate (G6P) and glucose in mouse tissues in vivo and serum as well as in 3T3-L1 adipocytes in vitro. All reactions are performed in one 96-well microplate by consecutive addition of reagents, and the assay is able to quantify 2DG and 2DG6P in the range of 5–80 pmol. The results obtained with the assay for 2DG uptake in vitro and in vivo in the absence or presence of insulin stimulation was similar to those obtained with the standard radioisotopic method. Thus, the enzymatic assay should prove to be useful for measurement of 2DG uptake in insulin-responsive tissues in vivo as well as in cultured cells.  相似文献   

2.
J J Ye  J W Neal  X Cui  J Reizer    M H Saier  Jr 《Journal of bacteriology》1994,176(12):3484-3492
Lactobacillus brevis takes up glucose and the nonmetabolizable glucose analog 2-deoxyglucose (2DG), as well as lactose and the nonmetabolizable lactose analoge thiomethyl beta-galactoside (TMG), via proton symport. Our earlier studies showed that TMG, previously accumulated in L. brevis cells via the lactose:H+ symporter, rapidly effluxes from L. brevis cells or vesicles upon addition of glucose and that glucose inhibits further accumulation of TMG. This regulation was shown to be mediated by a metabolite-activated protein kinase that phosphorylase serine 46 in the HPr protein. We have now analyzed the regulation of 2DG uptake and efflux and compared it with that of TMG. Uptake of 2DG was dependent on an energy source, effectively provided by intravesicular ATP or by extravesicular arginine which provides ATP via an ATP-generating system involving the arginine deiminase pathway. 2DG uptake into these vesicles was not inhibited, and preaccumulated 2DG did not efflux from them upon electroporation of fructose 1,6-diphosphate or gluconate 6-phosphate into the vesicles. Intravesicular but not extravesicular wild-type or H15A mutant HPr of Bacillus subtilis promoted inhibition (53 and 46%, respectively) of the permease in the presence of these metabolites. Counterflow experiments indicated that inhibition of 2DG uptake is due to the partial uncoupling of proton symport from sugar transport. Intravesicular S46A mutant HPr could not promote regulation of glucose permease activity when electroporated into the vesicles with or without the phosphorylated metabolites, but the S46D mutant protein promoted regulation, even in the absence of a metabolite. The Vmax but not the Km values for both TMG and 2DG uptake were affected. Uptake of the natural, metabolizable substrates of the lactose, glucose, mannose, and ribose permeases was inhibited by wild-type HPr in the presence of fructose 1,6-diphosphate or by S46D mutant HPr. These results establish that HPr serine phosphorylation by the ATP-dependent, metabolite-activated HPr kinase regulates glucose and lactose permease activities in L. brevis and suggest that other permeases may also be subject to this mode of regulation.  相似文献   

3.
Ischemia is reported to stimulate glucose uptake, but the signaling pathways involved are poorly understood. Modulation of glucose transport could be important for the cardioprotective effects of brief intermittent periods of ischemia and reperfusion, termed ischemic preconditioning. Previous work indicates that preconditioning reduces production of acid and lactate during subsequent sustained ischemia, consistent with decreased glucose utilization. However, there are also data that preconditioning enhances glucose uptake. The present study examines whether preconditioning alters glucose transport and whether this is mediated by either phosphatidylinositol 3-kinase (PI3K) or p38 MAP kinase. Langendorff-perfused rat hearts were preconditioned with 4 cycles of 5 min of ischemia and 5 min of reperfusion, with glucose as substrate. During the last reflow, glucose was replaced with 5 mM acetate and 5 mM 2-deoxyglucose (2DG), and hexose transport was measured from the rate of production of 2-deoxyglucose 6-phosphate (2DG6P), using (31)P nuclear magnetic resonance. Preconditioning stimulated 2DG uptake; after 15 min of perfusion with 2DG, 2DG6P levels were 165% of initial ATP in preconditioned hearts compared with 96% in control hearts (p < 0.05). Wortmannin, an inhibitor of PI3K, did not block the preconditioning induced stimulation of 2DG6P production, but perfusion with SB202190, an inhibitor of p38 MAP kinase, did attenuate 2DG6P accumulation (111% of initial ATP, p < 0. 05 compared with preconditioned hearts). SB202190 had no effect on 2DG6P accumulation in nonpreconditioned hearts. Preconditioning stimulation of translocation of GLUT4 to the plasma membrane was not inhibited by wortmannin. The data demonstrate that ischemic preconditioning increases hexose transport and that this is mediated by p38 MAP kinase and is PI3K-independent.  相似文献   

4.
To determine 2-deoxy-D-glucose (2DG) and 2-deoxy-D-glucose 6-phosphate (DG6P) in mouse tissue after injection of 2DG, we have developed a novel assay. This assay is a simple procedure involving incubation of samples with four independent, single reaction mixtures followed by measurement of fluorescence. From differences between the values obtained with the four reactions, each of glucose, glucose 6-phosphate, 2DG and DG6P were able to be quantified in a sensitive manner. Using this assay system, glucose and 2DG in blood and DG6P-accumulation in muscle were easily determined. Therefore, this assay may be useful for measuring in vivo glucose uptake without the use of radioisotopes.  相似文献   

5.
The present study analyses the effect of eugenol, arecoline and vanillic acid alone and in combination with two oral hypoglycemic drugs (OHD), namely, metformin and 2,4-thiazolodinedione (THZ), on 2-deoxyglucose (2DG) uptake in L6 myotubes. 2DG uptake in L6 myotubes was determined using an enzymatic assay developed by Yamamoto et al. (2006). Lipid content inside the cells has been estimated with oil red O assay. The absorption, distribution, metabolism, and excretion (ADME) and drug likeness properties of these phytochemicals are estimated using software QikProp®. All the three phytochemicals enhance 2DG uptake both in time- and dose-dependent manner. Eugenol and arecoline enhances 2DG uptake synergistically with both the OHD; whereas vanillic acid showing partly synergy with THZ and antagonistic activity with metformin on 2DG uptake. Eugenol and arecoline significantly increase the expressions of the glucose transporter type 4 (GLUT4) and phosphoinositide 3-kinase (PI3K) genes, but not the peroxisome proliferator-activated receptor (PPAR) gamma. Whereas vanillic acid does not has any significant effect on the expressions of these genes, the ADME results indicate that these phytochemicals are satisfying all the conditions to have a good oral bioavailability. These findings suggest that these phytochemicals can replace the commercial drugs in part, which could lead to a reduction in toxicity and side effects caused by the later as well as reduce the secondary complications.  相似文献   

6.
We have developed a rapid nonradioisotope chemiluminescent assay adapted to high-throughput screening experiments, to evaluate glucose uptake activity in cultured cells. For chemiluminescence quantification of 2-deoxyglucose, we used a luminol oxidation reaction after an enzymatic dephosphorylation of 2-deoxyglucose-6-phosphate. All reactions were performed at 37 °C by consecutive addition of reagents, and the assay is able to quantify 2DG in picomole per well. To confirm the reliability of this method, we have evaluated the dose–effect of insulin, GLUT4 inhibitors and insulin-sensitizing agent on 2DG uptake into 3T3-L1 cells. The results obtained with the assay for 2DG uptake in vitro in the absence or presence of insulin stimulation, were similar to those obtained by the previous radioisotopic and enzymatic methods. We have also used this assay to evaluate the effect of various reactive carbonyl and oxygen species on insulin-stimulated 2DG-uptake into adipocytes. All reactive carbonyl species tested decreased insulin-stimulated glucose uptake in a time- and dose-dependent manner without affecting basal glucose uptake in 3T3-L1 cells. 4-hydroxynonenal was found to be the most potent in the impairment of glucose uptake. This new enzymatic chemiluminescent assay is rapid and useful for measurement of 2DG uptake in insulin-responsive in cultured cells.  相似文献   

7.
Methylene blue (MB), a common cell stain, has been shown to inhibit nitric oxide synthase and guanylate cyclase, which has led to the recent use of MB in nitric oxide signaling studies. This study documents the effects of MB on 2-deoxyglucose (2DG) uptake in L929 fibroblast cells where uptake is controlled by a single glucose transporter, GLUT 1. MB significantly activates cytochalasin B-inhibitable glucose transport in a dose dependent fashion within 10 min. A maximal stimulation of up to 800% was achieved by 50 microM MB after a 45-min exposure. The Vmax of transport increased without a change in the Km, which was accomplished without a significant change in the GLUT 1 content. The reduced form of MB, did not stimulate 2DG uptake and potassium ferricyanide, an extracellular redox agent, prevented both the staining and stimulatory effects of MB suggesting MB is reduced at the cell surface before it enters L929 cells. Phenylarsine oxide did not block cell staining as noted in other cells lines, but it did inhibit both basal and MB-stimulated 2DG uptake. Likewise, methyl-beta-cyclodextrin, an agent used to remove membrane cholesterol, blocked both the staining and stimulatory effects of MB. The AMP analog, AICAR, inhibited rather than activated basal 2DG uptake, and it did not alter MB-stimulated uptake suggesting that AMP kinase activation is not critical to the MB effect. Wortmannin, an inhibitor of PI kinase, had no effect on MB-stimulated 2DG uptake. These data provide additional insight into the acute regulation of GLUT 1 transport activity in L929 cells.  相似文献   

8.
The transport of 1,5-anhydro-D-glucitol (AG) across plasma membranes was investigated in rat hepatoma cells, Reuber H-35. The AG uptake by the cells showed a concentration gradient dependency: the uptake was saturated within 40 s, which was less than one-third of the saturation time for 2-deoxy-D-glucose (DG) uptake. Furthermore, the Km value of the transport system for AG was higher than 100 mM. Though AG has a pyranoid structure resembling that of glucose, AG did not compete for cellular uptake with DG, D-glucose or 3-O-methyl-D-glucose, which are taken into cells through the glucose transporters. Conversely, the DG transport was not inhibited by AG at concentrations up to 50 mM. AG transport was hardly inhibited by 10 microM cytochalasin B, which strongly inhibits glucose transporters. In contrast, the AG transport was inhibited by 100 microM phloretin much more strongly than the DG transport when cells were preincubated with the inhibitor; the inhibition constant was 28.0 microM. The AG transport was not inhibited by 100 microM phloridzin, while the DG uptake was slightly inhibited by phloridzin. On the basis of these observations we propose that the AG uptake into rat hepatoma cells is mediated by a carrier distinct from glucose transporters.  相似文献   

9.
10.
11.
The thiazolidinedione class of antidiabetic drugs, including troglitazone, has an insulin-sensitizing effect for patients with type 2 diabetes. However, in some tissues, studies have shown that troglitazone also has an acute insulin-independent effect on glucose uptake. To determine the extent of this acute action of troglitazone, the effect of troglitazone on 2-deoxyglucose (2DG) uptake in L929 fibroblast cells was measured. Troglitazone stimulated 2DG uptake in a dose dependent manner with a maximum stimulation of >300% at 5-10 microM. In addition, nitric oxide has been shown to stimulate glucose uptake in peripheral muscle tissue. Therefore, the effect of nitric oxide on 2DG uptake in L929 cells was also investigated using the nitric oxide donor, sodium nitroprusside (SNP). SNP stimulated 2DG uptake by >200% with a maximally effective concentration of 5 mM. The combined effect of maximally effective concentrations of both stimulants (10 microM troglitazone + 5 mM SNP) was not additive suggesting a shared pathway for 2DG uptake. However, the nitric oxide synthase inhibitor, N(G)-monomethyl-L-arginine (L-NMMA, 50 microM) had no effect on troglitazone stimulated 2DG uptake, indicating that the troglitazone and nitric oxide pathways converge after nitric oxide production. In addition, 12.5 microM dantrolene was shown to have no effect on either troglitazone or SNP stimulated 2DG uptake suggesting that these stimulatory effects are independent of changes in calcium ion concentrations. These data provide important evidence for the acute regulation of glucose transport through GLUT 1 transporters.  相似文献   

12.
Previously, we developed a microplate assay to quantitate 2-deoxyglucose (2DG) and 2-deoxyglucose-6-phosphate in samples for in vitro and in vivo use. In this assay system, four different reaction mixtures were used, and the difference in the reactivity of the two types of glucose-6-phosphate dehydrogenase (G6PDH) variants was used. Because G6PDH from tolura yeast was no longer available, we modified our assay system for the use of G6PDH from Leuconostoc. Using this improved assay system, concentrations of glucose, 2DG, glucose-6-phosphate, and 2-deoxyglucose-6-phosphate were easily measured. This assay may be useful for measuring uptake of 2DG without the use of radioisotopes.  相似文献   

13.
14.
15.
We investigated a nonradioisotope method for the evaluation of glucose uptake activity using enzymatic measurement of 2-deoxyglucose 6-phosphate (2DG6P) content in isolated rat soleus muscle in vitro and in vivo. The 2DG6P content in isolated rat soleus muscle after incubation with 2-deoxyglucose (2DG) was increased in a dose-dependent manner by insulin (ED(50) = 0.6 mU/ml), the maximum response being about 5 times that of the basal content in vitro. This increment was completely abolished by wortmannin (100 nM), with no effect on basal 2DG6P content. An insulin-mimetic compound, vanadium, also increased 2DG6P content in a dose-dependent manner. In isolated soleus muscle of Zucker fa/fa rats, well known as an insulin-resistant model, insulin did not increase 2DG6P content. The 2DG6P content in rat soleus muscle increased after 2DG (3 mmol/kg) injection in vivo, and conversely, the 2DG concentration in plasma was decreased in a dose-dependent manner by insulin (ED(50) = 0.11 U/kg). The maximum response of the accumulation of 2DG6P in soleus muscle was about 4 times that of the basal content. This method could be useful for evaluating glucose uptake (transport plus phosphorylation) activity in soleus muscle in vitro and in vivo without using radioactive materials.  相似文献   

16.
Insulin and parathyroid hormone (PTH) regulate glucose metabolism in bone cells. In order to differentiate between the effects of these hormones and to compare the potency of insulin with that of insulin-like growth factor (IGF) I, we treated rat bone-derived osteoblastic (PyMS) cells for different time periods and at different concentrations with insulin, IGF I, or PTH, and measured [1-(14)C]-2-deoxy-D-glucose (2DG) uptake and incorporation of D-[U-(14)C] glucose into glycogen. 2DG uptake was Na-independent with an apparent affinity constant (K (M)) of ~2 mmol/l. Expression of the high affinity glucose transporters (GLUT), GLUT1 and GLUT3 but not of GLUT4, was found by Northern and Western analysis. Similar to the findings with primary rat osteoblasts, but distinct from those in rat fibroblasts, 2DG uptake and glycogen synthesis were increased in this cell line after exposure to low concentrations (0.1 nmol/l and above) of PTH. IGF I at low doses (0.3 nmol/l and above) or insulin at higher doses (1 nmol/l and above) stimulated 2DG uptake and [(3)H] thymidine incorporation into DNA. 2DG transport was enhanced already after 30 min of IGF I treatment whereas the effect of PTH became significant after 6 h. It is concluded that IGF I rather than insulin may be a physiological regulator of 2DG transport and glycogen synthesis in osteoblasts.  相似文献   

17.
The accumulation of 2-deoxy-D-glucose-6-phosphate (2DG6P), detected using 31P NMR spectroscopy, has been used as a measure of the rate of glucose uptake, yet the accuracy of this measurement has not been verified. In this study, isolated rat hearts were perfused with different substrates or isoproterenol for 30 min before measurement of either 2DG6P accumulation or [2-3H]glucose uptake, without and with insulin. Basal contractile function and metabolite concentrations were the same for all hearts. The basal rates of 2DG6P accumulation differed significantly, depending on the preceding perfusion protocol, and were 38-60% of the [2-3H]glucose uptake rates, whereas insulin-stimulated 2DG6P accumulation was the same or 71% higher than the [2-3H]glucose uptake rates. Therefore the ratio of 2DG6P accumulation/[2-3H]glucose uptake rates varied from 0.38 to 1.71, depending on the prior perfusion conditions or the presence of insulin. The rates of 2DG6P hydrolysis were found to be proportional to the intracellular 2DG6P concentrations, with a K(m) of 17.5mM and V(max) of 1.4 micromol/g dry weight/min. We conclude that the rates of 2DG6P accumulation do not accurately reflect glucose uptake rates under all physiological conditions in the isolated heart and should be used with caution.  相似文献   

18.
Exposure of quiescent cultures of human gingival fibroblasts (HuGi) and porcine synovicocytes (PSF) to human recombinant interleukin 1 alpha or -beta (IL1 alpha and -beta) enhanced the rate of glycolysis as judged by increased lactate production. The cytokines also increased uptake of [3H]2-deoxyglucose (DG) in a time- and dose-dependent manner. Stimulation of DG uptake was first evident 6-8 h following addition of IL1 and was maximal by 24-30 h. IL1 alpha and -beta were equipotent. Half-maximal stimulation occurred at approximately 1 pM IL1; maximal stimulation (2.5-4.5-fold in HuGi, 3-7-fold in PSF) was obtained with approximately 80 pM IL1. The dose-response curves for lactate production and DG uptake were similar. Increased DG uptake was blocked by specific antisera to IL1 and by inhibitors of protein and RNA synthesis but not by indomethacin, an inhibitor of prostaglandin production. DG uptake was enhanced by IL1 in serum-starved cells in the presence of neutralizing anti-platelet-derived growth factor serum. The effect was therefore not secondary to prostaglandin or platelet-derived growth factor production. No increase in cell cycling was detected in IL1-treated cells under the experimental conditions. Kinetic analysis revealed that the Vmax for DG uptake was increased by IL1 (from 36 to 144 pmol/min/mg of cell protein), whereas the Km was unchanged. HuGi cells were pulse-labeled with [35S]methionine following exposure to IL1. Cell lysates were immunoprecipitated using a specific antiserum raised against human erythrocyte glucose transporter. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis/autoradiography of these immunoprecipitates revealed dose- and time-dependent increases in the net rate of glucose transporter synthesis which mirrored the changes in DG uptake.  相似文献   

19.
Glucose uptake across the plasma membrane in animal cells plays a crucial role in whole-body glucose homeostasis. Insulin-stimulated glucose transport activity in vivo in several tissues was estimated using the 2-deoxy-D-[1-(3)H]glucose ([(3)H]2DG) uptake determination method. A tracer dose of [(3)H]2DG was injected intravenously into 8-day-old chicks (Gallus gallus) administered simultaneously or previously with porcine insulin (40 microg/kg BW). After 10 or 20 min, several major tissues, including skeletal and cardiac muscle, were sampled and their 2-deoxy-D-[1-(3)H]glucose 6-phosphate content analyzed. Plasma glucose concentration and [(3)H]2DG radioactivity were lowered by insulin within 20 min of [(3)H]2DG administration, while the plasma [(3)H]2DG/glucose ratio was not significantly different between chicks injected with insulin and their control counterparts. A marked uptake of 2DG was observed in cardiac tissue and brain, followed by kidney and skeletal muscles. In skeletal muscles, insulin increased the 2DG uptake in soleus, extensor digitorum longus and pectoralis superficialis muscles. On the other hand, no significant increases in insulin-induced 2DG uptake were detected in cardiac muscle or adipose tissue compared to controls. The results show that glucose transport across the plasma membrane in vivo in most skeletal muscles tested, but not cardiac muscle, was increased by insulin administration to chicks. These findings suggest that an insulin-responsive glucose transport mechanism is present in chickens, even though they intrinsically lack GLUT4 homologous gene, the insulin-responsive glucose transporter in mammals.  相似文献   

20.
1. Incubation of C6 glioma cultures with insulin resulted in a time and dose-dependent stimulation of 2-deoxy-D-glucose uptake. The maximal stimulation (160% of the control) was observed with 1 nM insulin and 0.05 nM caused half-maximum effect. 2. Incubation of NG 108-15 (neuroblastoma x glioma hybrid) and N2 neuroblastoma cells with 160 nM insulin did not result in a significant stimulation of this glucose uptake. 3. The basal level and stimulatory effect by insulin on this glucose uptake observed in C6 glioma cells were dependent on the presence of calcium in the medium. 4. Such an increase in glucose uptake in C6 glioma cells was also observed in the presence of diacylglycerol (DG) generating agents, such as carbachol (1 mM) and phospholipase C (0.05 unit/ml) or of DG analogs, such as sn-1,2-dioctanoyl glycerol (250 microM) and phorbol myristate acetate (1 microM). 5. Our results indicated that both calcium ion and DG levels play important roles in the regulation of glucose uptake in the glial cells, but not in neuronal cells from the brain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号