首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The amino acid sequence of the sodium ion-dependent citrate transporter CitS of K. pneumoniae contains 12 hydrophobic stretches that could form membrane-spanning segments. A previous analysis of the membrane topology in Escherichia coli using the PhoA gene fusion technique indicated that only nine of these hydrophobic segments span the membrane, while three segments, Vb, VIII and IX, were predicted to have a periplasmic location (Van Geest, M., and Lolkema, J. S. (1996) J. Biol. Chem. 271, 25582-25589). A topology study of C-terminally truncated CitS molecules in dog pancreas microsomes revealed that the protein traverses the endoplasmic reticulum membrane 11 times. In agreement with the PhoA fusion data, segment Vb was predicted to have a periplasmic location, but, in contrast, segments VIII and IX were found to be membrane-spanning (Van Geest, M., Nilsson, I., von Heijne, G., and Lolkema, J. S. (1999) J. Biol. Chem. 274, 2816-2823). In the present study, using site-directed Cys labeling, the topology of segments VIII and IX in the full-length CitS protein was determined in the E. coli membrane. Engineered cysteine residues in the loop between the two segments were accessible to a membrane-impermeable thiol reagent exclusively from the cytoplasmic side of the membrane, demonstrating that transmembrane segments (TMSs) VIII and IX are both membrane-spanning. It follows that the folding of CitS in the E. coli and endoplasmic reticulum membrane is the same. Cysteine accessibility studies of CitS-PhoA fusion molecules demonstrated that in the E. coli membrane segment VIII is exported to the periplasm in the absence of the C-terminal CitS sequences, thus explaining why the PhoA fusions do not correctly predict the topology. An engineered cysteine residue downstream of TMS VIII moved from a periplasmic to a cytoplasmic location when the fusion protein containing TMSs I-VIII was extended with segment IX. Thus, downstream segment IX is both essential and sufficient for the insertion of segment VIII of CitS in the E. coli membrane.  相似文献   

2.
Structural classification of families of membrane proteins by bioinformatics techniques has become a critical aspect of membrane protein research. We have proposed hydropathy profile alignment to identify structural homology between families of membrane proteins. Here, we demonstrate experimentally that two families of secondary transporters, the ESS and 2HCT families, indeed share similar folds. Members of the two families show highly similar hydropathy profiles but cannot be shown to be homologous by sequence similarity. A structural model was predicted for the ESS family transporters based upon an existing model of the 2HCT family transporters. In the model, the transporters fold into two domains containing five transmembrane segments and a reentrant or pore-loop each. The two pore-loops enter the membrane embedded part of the proteins from opposite sides of the membrane. The model was verified by accessibility studies of cysteine residues in single-Cys mutants of the Na+-glutamate transporter GltS of Escherichia coli, a member of the ESS family. Cysteine residues positioned in predicted periplasmic loops were accessible from the periplasm by a bulky, membrane-impermeable thiol reagent, while cysteine residues in cytoplasmic loops were not. Furthermore, two cysteine residues in the predicted pore-loop entering the membrane from the cytoplasmic side were shown to be accessible for small, membrane-impermeable thiol reagents from the periplasm, as was demonstrated before for the Na+-citrate transporter CitS of Klebsiella pneumoniae, a member of the 2HCT family. The data strongly suggests that GltS of the ESS family and CitS of the 2HCT family share the same fold as was predicted by comparing the averaged hydropathy profiles of the two families.  相似文献   

3.
Mammalian sodium/bile acid cotransporters (SBATs) are glycoproteins with an exoplasmic N-terminus, an odd number of transmembrane regions, and a cytoplasmic C-terminus. Various algorithms predict eight or nine membrane-embedded regions derived from nine hydrophobic stretches of the protein (H1-H9). Three methods were used to define which of these were transmembrane or membrane-associated segments in the liver bile acid transporter. The first was in vitro translation/insertion scanning using either single hydrophobic sequences between the N-terminal domain of the alpha-subunit of the gastric H,K-ATPase and the C-terminal domain of the beta-subunit that contains five N-linked glycosylation exoplasmic flags or using constructs beginning with the N-terminus of the transporter of various lengths and again ending in the C-terminus of the H,K-ATPase beta-subunit. Seven of the predicted segments, but not the amphipathic H3 and H8 sequences, insert as both individual signal anchor and stop transfer sequences in the reporter constructs. These sequences, H3 and H8, are contained within two postulated long exoplasmic loops in the classical seven-transmembrane segment model. The H3 segment acts as a partial stop transfer signal when expressed downstream of the endogenous H2. In a similar manner, the other amphipathic segment, H8, inserts as a signal anchor sequence when translated in the context with the upstream transporter sequence in two different glycosylation constructs. Alanine insertion scanning identified regions of the transporter requiring precise alignment of sequence to form competent secondary structures. The transport activity of these mutants was evaluated either in native protein or in a yellow fluorescent protein (YFP) fusion protein construct. All alanine insertions in H3 and H8 abolished taurocholate uptake, suggesting that both these regions have structures with critical intramolecular interactions. Moreover, these insertions also prevented trafficking to the plasma membrane as assessed by confocal microscopy with a polyclonal antibody against either the C-terminus of the transporter or the YFP signal of the YFP-transporter fusion protein. Two glycosylation signals inserted in the first postulated loop region and four of five such signals in the second postulated loop region were not recognized by the oligosaccharide transferase, and the L256N mutation exhibited 10% glycosylation and was inactive. These findings support a topography with nine membrane-spanning or membrane-associated segments.  相似文献   

4.
The gene hoxN of Alcaligenes eutrophus encodes a membrane protein with a molecular mass of 33.1 kDa that mediates energy-dependent uptake of nickel ions. Based on the hydrophobicity of the HoxN protein five, six, or seven transmembrane segments were predicted, depending on the algorithm used for computer analysis. To distinguish between these possibilities varying segments of the amino-terminal end of the transporter were fused to the Escherichia coli enzymes aikaline phosphatase (PhoA) or β-galactosidase (LacZ). The enzymatic activity of 16 HoxN-PhoA and 15 HoxN-LacZ fusions was determined. On the assumption that PhoA fusions only exhibit high activity when fused to periplasmic domains of the target, while LacZ fusions are only active when oriented towards the cytoplasm, a two-dimensional model for the nickel transporter was developed. This model proposes that HoxN contains four periplasmic and four cytoplasmic regions, and seven transmembrane helices. The amino terminus is located in the cytoplasm, and the carboxyl terminus faces the periplasm.  相似文献   

5.
The structure of the membrane protein MntB, a component of a manganese transporter system in Synechocystis sp. strain PCC 6803, was examined with a series of fusions to the reporter proteins alkaline phosphatase and beta-galactosidase. The results support a topological model for MntB consisting of nine transmembrane segments, with the amino terminus of the protein being in the periplasm and the carboxyl terminus being in the cytoplasm.  相似文献   

6.
The TolQ and TolR proteins of Escherichia coli are required for the uptake of group A colicins and for infection by filamentous phages. Their topology in the cytoplasmic membrane was determined by cleavage with aminopeptidase K, proteinase K, and trypsin in spheroplasts and cell lysates. From the results obtained, it is proposed that the N terminus of TolQ is located in the periplasm and that it contains three transmembrane segments (residues 9 to 36, 127 to 159, and 162 to 191), a small periplasmic loop, and two large portions in the cytoplasm. The N terminus of TolR is located in the cytoplasm and is followed by a transmembrane segment (residues 21 to 40), and the remainder of the protein is located in the periplasm. A tolQ mutant, which rendered cells resistant to group A colicins and sensitive to cholate, had alanine 13 replaced by glycine and was lacking serine 14 in the first transmembrane segment. The membrane topologies of TolQ and TolR are similar to those proposed for ExbB and ExbD, respectively, which is consistent with the partial functional substitution between ExbB and TolQ and between ExbD and TolR. The amino acid sequences of these proteins display the highest homology in the transmembrane segments, which indicates that the membrane-spanning regions play an important role in the activities of the proteins.  相似文献   

7.
The YidC/Oxa1/Alb3 family of proteins catalyzes membrane protein insertion in bacteria, mitochondria, and chloroplasts. In this study, we investigated which regions of the bacterial YidC protein are important for its function in membrane protein biogenesis. In Escherichia coli, YidC spans the membrane six times, with a large 319-residue periplasmic domain following the first transmembrane domain. We found that this large periplasmic domain is not required for YidC function and that the residues in the exposed hydrophilic loops or C-terminal tail are not critical for YidC activity. Rather, the five C-terminal transmembrane segments that contain the three consensus sequences in the YidC/Oxa1/Alb3 family are important for its function. However, by systematically replacing all the residues in transmembrane segment (TM) 2, TM3, and TM6 with serine and by swapping TM4 and TM5 with unrelated transmembrane segments, we show that the precise sequence of these transmembrane regions is not essential for in vivo YidC activity. Single serine mutations in TM2, TM3, and TM6 impaired the membrane insertion of the Sec-independent procoat-leader peptidase protein. We propose that the five C-terminal transmembrane segments of YidC function as a platform for the translocating substrate protein to support its insertion into the membrane.  相似文献   

8.
Beutler R  Kaufmann M  Ruggiero F  Erni B 《Biochemistry》2000,39(13):3745-3750
The IICB(Glc) subunit of the glucose transporter acts by a mechanism which couples vectorial translocation with phosphorylation of the substrate. It contains 8 transmembrane segments connected by 4 periplasmic, 2 short, 1 long (80 residues), cytoplasmic loops and an independently folding cytoplasmic domain at the C-terminus. Random DNase I cleavage, EcoRI linker insertion, and screening for transport-active mutants afforded 12 variants with between 46% and 116% of wild-type sugar phosphorylation activity. They carried inserts of up to 29 residues and short deletions in periplasmic loops 1, 2, and 3, in the long cytoplasmic loop 3, and in the linker region between the membrane spanning IIC(Glc) and the cytoplasmic IIB(Glc) domains. Disruption of the gene at the sites of linker insertion decreased the expression level and diminished phosphotransferase activity to between 7% and 32%. IICB(Glc) with a discontinuity in the cytoplasmic loop was purified to homogeneity as a stable complex. It was active only if encoded by a dicistronic operon but not if encoded by two genes on two different replicons, suggesting that spatial proximity of the nascent polypeptide chains is important for folding and membrane assembly.  相似文献   

9.
The transmembrane topology of the Acr3 family arsenite transporter Acr3 from Bacillus subtilis was analysed experimentally using translational fusions with alkaline phosphatase and green fluorescent protein and in silico by topology modelling. Initial topology prediction resulted in two models with 9 and 10 TM helices respectively. 32 fusion constructs were made between truncated forms of acr3 and the reporter genes at 17 different sites throughout the acr3 sequence to discriminate between these models. Nine strong reporter protein signals provided information about the majority of the locations of the cytoplasmic and extracellular loops of Acr3 and showed that both the N- and the C-termini are located in the cytoplasm. Two ambiguous data points indicated the possibility of an alternative 8 helix topology. This possibility was investigated using another 10 fusion variants, but no experimental support for the 8 TM topology was obtained. We therefore conclude that Acr3 has 10 transmembrane helices. Overall, the loops which connect the membrane spanning segments are short, with cytoplasmic loops being somewhat longer than the extracellular loops. The study provides the first ever experimentally derived structural information on a protein of the Acr3 family which constitutes one of the largest classes of arsenite transporters.  相似文献   

10.
CitS of Klebsiella pneumoniae and GltS of Escherichia coli are Na+-dependent secondary transporters from different families that are believed to share the same fold and quaternary structure. A 10 kDa protein tag (Biotin Acceptor Domain [BAD]) was fused to the N-terminus of both proteins (CitS-BAD1 and GltS-BAD1, respectively) and inserted in the central cytoplasmic loop that connects the two halves of the proteins (CitS-BAD260 and GltS-BAD206). Both CitS constructs and GltS-BAD206 were produced and shown to be active transporters, but GltS-BAD1 could not be detected in the membrane. Distance relationships in the complexes were studied by cross-linking studies. Both CitS constructs were shown to be in the dimeric state after purification in detergent by cross-linking with glutaraldehyde. The concentration of glutaraldehyde resulting in 50% cross-linking was significantly higher for CitS-BAD1 than for CitS and CitS-BAD260. Remarkably, GltS and GltS-BAD260 were not cross-linked by glutaraldehyde because of the lack of productive reactive sites. Cross-linking of GltS was observed when the N-terminal 46 residues of CitS with or without BAD at the N-terminus were added to the N-terminus of GltS. The stretch of 46 residues contains the first transmembrane segment of CitS that is missing in the GltS structure. The data support an orientation of the monomers in the dimer with the N-termini close to the dimer interface and the central cytoplasmic loops far away at the ends of the long axis of the dimer structure in a view perpendicular to the membrane.  相似文献   

11.
EmrE is a 12-kDa Escherichia coli multidrug transporter that confers resistance to a wide variety of toxic reagents by actively removing them in exchange for hydrogen ions. The three native Cys residues in EmrE are inaccessible to N-ethylmaleimide (NEM) and a series of other sulfhydryls. In addition, each of the three residues can be replaced with Ser without significant loss of activity. A protein without all the three Cys residues (Cys-less) has been generated and shown to be functional. Using this Cys-less protein, we have now generated a series of 48 single Cys replacements throughout the protein. The majority of them (43) show transport activity as judged from the ability of the mutant proteins to confer resistance against toxic compounds and from in vitro analysis of their activity in proteoliposomes. Here we describe the use of these mutants to study the accessibility to NEM, a membrane permeant sulfhydryl reagent. The study has been done systematically so that in one transmembrane segment (TMS2) each single residue was replaced. In each of the other three transmembrane segments, at least four residues covering one turn of the helix were replaced. The results show that although the residues in putative hydrophilic loops readily react with NEM, none of the residues in putative transmembrane domains are accessible to the reagent. The results imply very tight packing of the protein without any continuous aqueous domain. Based on the findings described in this work, we conclude that in EmrE the substrates are translocated through a hydrophobic pathway.  相似文献   

12.
Erwinia chrysanthemi, a Gram-negative phythopathogenic bacterium, secretes two related extracellular metalloproteases, B and C, which do not have N-terminal signal sequences. The specific pathway by which they are secreted, which has been reconstituted in Escherichia coli, comprises three proteins -- PrtD, PrtE and PrtF. Hybrid proteins containing segments of these proteins fused to the C-terminus of protease B were purified and used to immunize rabbits. The antisera thus obtained were used to study the location and membrane topology of the three proteins. PrtD and PrtE were found to cofractionate almost exclusively with the cytoplasmic membrane, whereas PrtF was found to co-fractionate mostly with the outer membrane. Proteinase K accessibility experiments as well as sequence data lead us to propose that PrtF has one or both ends exposed to the periplasm, that PrtE has one transmembrane segment with its amino-terminus facing the cytoplasm and its C-terminal hydrophilic domain exposed to the periplasm, and that PrtD has six transmembrane segments with its N-terminus and its C-terminal hydrophilic domain in the cytoplasm.  相似文献   

13.
The 2-hydroxycarboxylate transporter (2HCT) family of secondary transporters belongs to a much larger structural class of secondary transporters termed ST3 which contains about 2000 transporters in 32 families. The transporters of the 2HCT family are among the best studied in the class. Here we detect weak sequence similarity between the N- and C-terminal halves of the proteins using a sensitive method which uses a database containing the N- and C-terminal halves of all the sequences in ST3 and involves blast searches of each sequence in the database against the whole database. Unrelated families of secondary transporters of the same length and composition were used as controls. The sequence similarity involved major parts of the N- and C-terminal halves and not just a small stretch. The membrane topology of the homologous N- and C-terminal domains was deduced from the experimentally determined topology of the members of the 2HCT family. The domains consist of five transmembrane segments each and have opposite orientations in the membrane. The N terminus of the N-terminal domain is extracellular, while the N terminus of the C-terminal domain is cytoplasmic. The loops between the fourth and fifth transmembrane segment in each domain are well conserved throughout the class and contain a high fraction of residues with small side chains, Gly, Ala and Ser. Experimental work on the citrate transporter CitS in the 2HCT family indicates that the loops are re-entrant or pore loops. The re-entrant loops in the N- and C-terminal domains enter the membrane from opposite sides (trans-re-entrant loops). The combination of inverted membrane topology and trans-re-entrant loops represents a new fold for secondary transporters and resembles the structure of aquaporins and models proposed for Na+/Ca2+ exchangers.  相似文献   

14.
CitS from Klebsiella pneumoniae acts as a secondary symporter of citrate and sodium ions across the inner membrane of the host. The protein is the best characterized member of the 2-hydroxycarboxylate transporter family, while no experimental structural information at sub-nanometer resolution is available on this class of membrane proteins. Here, we applied electron crystallography to two-dimensional crystals of CitS. Carbon-film-adsorbed tubular two-dimensional crystals were studied by cryo-electron microscopy, producing the 6-?-resolution projection structure of the membrane-embedded protein. In the p22(1)2(1)-symmetrized projection map, the predicted dimeric structure is clearly visible. Each monomeric unit can tentatively be interpreted as being composed of 11 transmembrane α-helices. In projection, CitS shows a high degree of structural similarity to NhaP1, the Na(+)/H(+) antiporter of Methanococcus jannaschii. We discuss possible locations for the dimer interface and models for the helical arrangements and domain organizations of the symporter based on existing models.  相似文献   

15.
Abstract

CitS of Klebsiella pneumoniae and GltS of Escherichia coli are Na+-dependent secondary transporters from different families that are believed to share the same fold and quaternary structure. A 10 kDa protein tag (Biotin Acceptor Domain [BAD]) was fused to the N-terminus of both proteins (CitS-BAD1 and GltS-BAD1, respectively) and inserted in the central cytoplasmic loop that connects the two halves of the proteins (CitS-BAD260 and GltS-BAD206). Both CitS constructs and GltS-BAD206 were produced and shown to be active transporters, but GltS-BAD1 could not be detected in the membrane. Distance relationships in the complexes were studied by cross-linking studies. Both CitS constructs were shown to be in the dimeric state after purification in detergent by cross-linking with glutaraldehyde. The concentration of glutaraldehyde resulting in 50% cross-linking was significantly higher for CitS-BAD1 than for CitS and CitS-BAD260. Remarkably, GltS and GltS-BAD260 were not cross-linked by glutaraldehyde because of the lack of productive reactive sites. Cross-linking of GltS was observed when the N-terminal 46 residues of CitS with or without BAD at the N-terminus were added to the N-terminus of GltS. The stretch of 46 residues contains the first transmembrane segment of CitS that is missing in the GltS structure. The data support an orientation of the monomers in the dimer with the N-termini close to the dimer interface and the central cytoplasmic loops far away at the ends of the long axis of the dimer structure in a view perpendicular to the membrane.  相似文献   

16.
Uracil permease is a multispanning protein of the Saccharomyces cerevisiae plasma membrane which is encoded by the FUR4 gene and produced in limited amounts. It has a long N-terminal hydrophilic segment, which is followed by 10 to 12 putative transmembrane segments, and a hydrophilic C terminus. The protein carries seven potential N-linked glycosylation sites, three of which are in its N-terminal segment. Overexpression of this permease and specific antibodies were used to show that uracil permease undergoes neither N-linked glycosylation nor proteolytic processing. Uracil permease N-terminal segments of increasing lengths were fused to a reporter glycoprotein, acid phosphatase. The in vitro and in vivo fates of the resulting hybrid proteins were analyzed to identify the first signal anchor sequence of the permease and demonstrate the cytosolic orientation of its N-terminal hydrophilic sequence. In vivo insertion of the hybrid protein bearing the first signal anchor sequence of uracil permease into the endoplasmic reticulum membrane was severely blocked in sec61 and sec62 translocation mutants.  相似文献   

17.
The transmembrane topology of the Acr3 family arsenite transporter Acr3 from Bacillus subtilis was analysed experimentally using translational fusions with alkaline phosphatase and green fluorescent protein and in silico by topology modelling. Initial topology prediction resulted in two models with 9 and 10 TM helices respectively. 32 fusion constructs were made between truncated forms of acr3 and the reporter genes at 17 different sites throughout the acr3 sequence to discriminate between these models. Nine strong reporter protein signals provided information about the majority of the locations of the cytoplasmic and extracellular loops of Acr3 and showed that both the N- and the C-termini are located in the cytoplasm. Two ambiguous data points indicated the possibility of an alternative 8 helix topology. This possibility was investigated using another 10 fusion variants, but no experimental support for the 8 TM topology was obtained. We therefore conclude that Acr3 has 10 transmembrane helices. Overall, the loops which connect the membrane spanning segments are short, with cytoplasmic loops being somewhat longer than the extracellular loops. The study provides the first ever experimentally derived structural information on a protein of the Acr3 family which constitutes one of the largest classes of arsenite transporters.  相似文献   

18.
In this study, we have investigated the effect of hydrophobic mismatch between the thickness of the membrane and a transmembrane segment of a protein that directly inserts into the membrane bilayer. For this purpose we used mutants of the single-spanning Pf3 coat protein that can spontaneously insert into Escherichia coli membrane vesicles and large unilamellar vesicles (LUVs). The thickness of the liposomal bilayer could be altered by using lipids with different acyl chain lengths or by incorporation of cholesterol. The insertion efficiency of the protein clearly depended on the bilayer thickness, with most efficient insertion under hydrophobic matching conditions. To discriminate between effects of length and hydrophobicity, mutants with different synthetic transmembrane segments were constructed. These mutants inserted into LUVs in a mismatch-dependent manner. However, in particular for longer and less hydrophobic mutants, most efficient insertion was generally observed in thinner bilayers than expected on the basis of hydrophobic matching.  相似文献   

19.
The Pseudomonas oleovorans alkane hydroxylase is an integral cytoplasmic membrane protein that is expressed and active in both Escherichia coli and P. oleovorans. Its primary sequence contains eight hydrophobic stretches that could span the membrane as alpha-helices. The topology of alkane hydroxylase was studied in E. coli using protein fusions linking different amino-terminal fragments of the alkane hydroxylase (AlkB) to alkaline phosphatase (PhoA) and to beta-galactosidase (LacZ). Four AlkB-PhoA fusions were constructed using transposon TnphoA. Site-directed mutagenesis was used to create PstI sites at 12 positions in AlkB. These sites were used to create AlkB-PhoA and AlkB-LacZ fusions. With respect to alkaline phosphatase and beta-galactosidase activity each set of AlkB-PhoA and AlkB-LacZ fusions revealed the expected complementary activities. At three positions, PhoA fusions were highly active, whereas the corresponding LacZ fusions were the least active. At all other positions the PhoA fusions were almost completely inactive, but the corresponding LacZ fusions were highly active. These data predict a model for alkane hydroxylase containing six transmembrane segments. In this model the amino terminus, two hydrophilic loops, and a large carboxyl-terminal domain are located in the cytoplasm. Only three very short loops near amino acid positions 52, 112, and 251 are exposed to the periplasm.  相似文献   

20.
Montuori N  Rossi G  Ragno P 《FEBS letters》1999,458(1):32-36
The membrane topology of a resistance-nodulation-division (RND) family transporter, MexD of Pseudomonas aeruginosa, was determined. Although it had been predicted previously that most RND proteins contain 12 transmembrane helices, three independent computer programs used in the present study predicted that MexD possessed 11, 14 or 17 transmembrane segments. To investigate the topology of MexD more thoroughly, 25 MexD-PhoA (alkaline phosphatase) and 18 MexD-Bla (beta-lactamase) fusion plasmids were constructed and analyzed. The resulting topological model had just 12 transmembrane helices and two periplasmic loops of about 300 residues between helices 1 and 2 and helices 7 and 8. It is therefore proposed that the N- and C-termini are located in the cytoplasm and the predicted orientation is consistent with the 'positive-inside rule'. This topological model can be applied to other RND proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号