首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Presently, the wastewater treatment practices can be significantly improved through the introduction of new microbial treatment technologies. To meet increasingly stringent discharge standards, new applications and control strategies for the sustainable removal of ammonium from wastewater have to be implemented. Partial nitrification to nitrite was reported to be technically feasible and economically favorable, especially when wastewater with high ammonium concentrations or low C/N ratios is treated. For successful implementation of the technology, the critical point is how to maintain partial nitrification of ammonium to nitrite. Partial nitrification can be obtained by selectively inhibiting nitrite oxidizing bacteria through appropriate regulation of the system’s DO concentration, microbial SRT, pH, temperature, substrate concentration and load, operational and aeration pattern, and inhibitor. The review addressed the microbiology, its consequences for their application, the current status regarding application, and the future developments.  相似文献   

2.
A shortcut biological nitrogen removal (SBNR) utilizes the concept of a direct conversion of ammonium to nitrite and then to nitrogen gas. A successful SBNR requires accumulation of nitrite in the system and inhibition of the activity of nitrite oxidizers. A high concentration of free ammonia (FA) inhibits nitrite oxidizers, but unfortunately decreases the ammonium removal rate as well. Therefore, the optimal range of FA concentration is necessary not only to stabilize nitrite accumulation but also to achieve maximum ammonium removal. In order to derive such optimal FA concentrations, the specific substrate utilization rates of ammonium and nitrite oxidizers were measured. The optimal FA concentration range appeared to be 5–10 mg/L for the adapted sludge. The simulated results from the modified inhibition model expressed by FA and ammonium/nitrite concentrations were shown very similar to the experimental results.  相似文献   

3.
The C:N ratio of the pharmaceutical wastewaters is usually suitable for a combination of the anaerobic pretreatment with the high COD removal and aerobic posttreatment with the efficient biological N removal. This kind of anaerobic-aerobic process was tested in semipilot scale by using a UASB reactor and an activated sludge system with a predenitrification (total volume 100 1). It was found that at a total HRT of 2.3 days an average of 97.5% of COD and 73.5% of total N was removed. The UASB reactor was operated at 30°C with a volumetric loading rate of 8.7 kg.m-3.d-1, the efficiency of COD removal was 92.2%. The processes, which take part in the biological removal of nitrogen, especially the nitrification, were running with lower rates than usually observed in aerobic treatment systems.Abbreviations AAO anaerobic anoxic oxic configuration - AOO anaerobic oxic oxic configuration - B V volumetric organic loading rate (kg COD.m-3. d-1) - dB x specific COD removal rate (mg COD. g-1 VSS. d-1) - DNR denitrification rate (mg N–NO3. g-1 VSS. h-1) - ECOD efficiency of COD removal (%) - HRT hydraulic retention time (d) - NR nitrification rate (mg N–NO3. g-1 VSS. h-1) - R recirculation ratio (%) - SBP specific biogas production (m3.kg-1 removed COD) - SRT solids retention time; sludge age (d) - SS suspended solids (g.1-1) - UASB upflow anaerobic sludge blanket reactor - VSS volatile suspended solids (g.1-1)  相似文献   

4.
This paper presents a real-time control strategy for nitrogen removal via nitrite in a continuous flow SHARON reactor using on-line available and industrially feasible sensors (pH and ORP). The developed control strategy optimizes the length of aerobic and anoxic phases as well as the external carbon source addition. This strategy, implemented in a laboratory-scale SHARON reactor fed with synthetic wastewater and real dewatering sludge supernatant, was able to cope with step variations in influent flow rate and ammonium concentration. The main advantages of this control strategy over the traditional operation mode with fixed carbon source dosification and fixed length cycle operation were: better effluent quality (ammonia concentration decreased from 12 to 2 mg NH4–N L?1 and nitrogen removal efficiency raised from 95% to 98%) as result of the shorter cycle length: 2.9 h versus 4.0 h, and savings in external carbon addition: 1332 mg COD d?1 versus 2100 mg COD d?1.  相似文献   

5.
6.
7.
It has been reported in the literature that several microbial species have a considerable sorption capacity for heavy metals. Work herein reported, accomplished using a heterogeneous microbial population developed in a modified extended aeration activated sludge process, indicates sorption capabilities as good as, or better than, those for individual microbial species. The process herein described may have several advantages over pure or controlled culture processes and it offers the possibility for reuse of organic matter needed to regenerate metal-sorbing biomass, as well as autodigestion of excess biomass. The work also indicates that acclimation to high levels of a specific heavy metal (Cd) does not confer acclimation to another heavy metal (Cu).  相似文献   

8.
The denitrifying sulfide removal (DSR) process is a biorefinery process that can produce colloidal S0 from sulfide and nitrate-laden wastewaters. At long reaction time the formed S0 produced is reduced back to sulfide by sulfate-reducing bacteria so the resulting in poor conversion rate of S0 is poor. The presence of optimal hydraulic retention time (HRT) for maximizing S0 conversion from DSR wastewaters was proposed by batch assays and then confirmed in continuous flow tests.  相似文献   

9.
Summary Hyperconcentrated microalgae cultures (up to 3,29 g dry weight/L) were immobilized in kappa-carrageenan beads. It appears that entrapped algae are able to remove efficiently nitrogen and phosphorus from urban secondary effluent and then perform a tertiary wastewater treatment.  相似文献   

10.
为了研究小球藻在不同质量浓度的氨氮和亚硝态氮环境下的去除能力与生长效果,从实验室挑选3株不同的小球藻CV315-1(Chlorella sp.)、CV315-2(Chlorella sorokiniana)和CV315-3(Chlorella pyrenoidosa)分别置于不同质量浓度的氨氮和亚硝态氮模拟污水中,在温...  相似文献   

11.
The quantitative and qualitative composition of heterotrophic bacteria found in two types of wastewaters from the nitrogen industry was determined. The number of bacteria in the wastewaters was 10(4) to 10(6) cells/ml. Gram-negative bacteria accounted for 57% of the bacteria in the final retention reservoir whereas their number in the wastewaters discharged into surface waters was 90%. The dominating species among the Gram-negative bacteria was Pseudomonas, irrespective of the composition of the wastes and means by which they were discharged into the Wis?a. The studied microflora utilized in different metabolic processes nitrogen compounds present in the wastes.  相似文献   

12.
【目的】揭示以亚硝氮为唯一氮源生长的海洋紫色硫细菌去除水体中无机三态氮的特征和规律。【方法】在光照厌氧环境下,以乙酸盐为唯一有机物,在分别以氨氮、亚硝态氮、硝态氮为唯一氮源和三氮共存的模拟水体中,采用Nessler’s试剂分光光度法、N-(1-萘基)-乙二胺分光光度法和紫外分光光度法分别测定水体中氨氮、亚硝态氮和硝态氮的含量,比浊法测定菌体生物量。【结果】随着时间的延长,海洋紫色硫细菌Marichromatium gracile YL28分别在氨氮、亚硝态氮和硝态氮为唯一氮源的水体中对三氮的去除量增加,生物量增大,水体pH升高,并逐渐趋于平衡;YL28对氨氮的最大去除量和最大耐受浓度分别为9.64 mmol/L和36.64 mmol/L,当氨氮浓度低于3.21 mmol/L时,去除率可达97.61%以上;与氨氮相比,以亚硝态氮和硝态氮为唯一氮源,菌体的生长速率、生物量和水体最终pH较低,但对亚硝态氮和硝态氮的去除速率和去除量仍然很高,当亚硝态氮和硝态氮浓度分别达13.50 mmol/L和22.90 mmol/L时,YL28仍能够完全去除。在三氮共存的水体中,YL28也能良好的去除无机三态氮,对亚硝态氮和硝态氮去除能力更强。【结论】在模拟水体中,海洋紫色硫细菌YL28能够分别以氨氮、亚硝态氮和硝态氮为唯一氮源生长,具有良好的耐受和去除无机三态氮的能力,尤其对亚硝态氮具有良好的去除能力。本研究为进一步开发高效脱氮,尤其是去除亚硝态氮的不产氧光合细菌水质调节剂奠定了基础,也为微生物制剂的合理应用提供参考。  相似文献   

13.
In this study, the effects of sludge retention time (SRT) on NH(4)-N oxidation and NO(x)-N accumulation in the nitritation reactors were studied. The gradually decrease of SRT also caused long reaction time to achieve 99% NH(4)-N removal. Although the target NH(4)-N removal was achieved in a short reaction time at 40 days of SRT, decreasing of SRT from 40 to 30, 25, 20 days, increase the reaction time from 168 to 240 and 265 h, respectively. The inlet NH(4)-N was almost oxidized and the concentration of NO(2)-N accumulated to a high level of 177 mg/l, while NO(2)-N/(NO(3)-N+NO(2)-N) ratio was about 0.9 at SRT of 40 days. However, the concentration of NO(3)-N increased slightly and NO(2)-N/(NO(x)-N) ratio dropped to 0.8 when the SRT was lower than 40 days. During the operation in a cycle, free ammonia concentration in the SBR was decreased from 2.8 to 0.7 mg/l which is below the lowest concentration causing inhibition of nitrite oxidizing bacteria (NOB). It was assumed that combined dissolved oxygen limitation and NH(3)-N inhibition on NOB caused NO(2)-N accumulation under the experimental conditions.  相似文献   

14.
15.
The present paper reports the results of the application of a control system, based on artificial intelligence concepts, for the automation of a bench-scale SBR treating leachate generated in old landfills. Attention was given to the nitritation and denitritation processes in order to enhance the nitrogen removal efficiency. Nitrification and nitrogen removal were usually higher than 98% and 95%, respectively, whereas COD removal was approximately 20-30% due to the low biodegradability of organic matter in the leachate from old landfills; therefore, external COD was added to accomplish the denitrification process. Adjusting the length of the oxic phase, almost complete inhibition of the nitrite oxidizing organisms was observed. The results confirm the effectiveness of the nitrite route for nitrogen removal optimisation in leachate treatment. A significant saving of approximately 35% in external COD addition was achieved.  相似文献   

16.
Haloferax mediterranei is a denitrifying halophilic archaeon, able to assimilate nitrate or nitrite in the presence of oxygen by the assimilatory nitrate pathway. It can also grow in the presence of high nitrate or nitrite concentrations under anoxic conditions, using both nitrogen species as electron acceptors. In this study, the ability of H. mediterranei to remove high nitrate and nitrite concentrations from culture media has been demonstrated. This suggests that this haloarchaeon could be applied in water bioremediation processes to repair damage caused by anthropogenic activities. This could be beneficial in regions such as Comunidad Valenciana or Murcia (Spain), where the water tables contain high nitrate and nitrite concentrations due to fertiliser addition, and high salt concentrations due to marine intrusions.  相似文献   

17.
The removal of nitrogen from industrial wastewaters carrying about 1,000 mg NH4-N and urea-N/l was investigated on a laboratory scale. The use of a three-step nitryfying activated sludge with adjustment of pH from step to step resulted in 99% oxidation of both forms of nitrogen to nitrites. The efficiency of nitrification was 18 mg N/l/h. Total time of wastewater aeration depended on nitrogen concentration and was 33-54 hours. Complete dentrification of NO2-N was obtained in packed-bed reactor with the use of acetic acid as a carbon source. Efficiency of denitrification was 361 mg N/l/h.  相似文献   

18.
Olive mill wastewater (OMW) samples from two traditional varieties (Peranzana and Ogliarola Garganica) of Apulian region (southern Italy) and produced through continuous and traditional methods were microbiologically and chemically examined; thus, 104 yeasts were isolated and selected for further analyses. The strains were identified as Candida boidinii, Pichia holstii, Pichia membranifaciens, and Saccharomyces cerevisiae and analyzed to assess their suitability to metabolize phenols. Based on phenol metabolism, 27 strains were selected and inoculated into OMW aliquots to determine their ability to reduce phenols in vivo; then, five strains (identified with the codes 682—C. boidinii and 625, 642, 647, and 941—P. holstii) were used as a cocktail in wastewaters for a final validation step. In this last experiment, the effects of the temperature (10–30°C) and (NH4)2SO4 (0.0–6.0 g l−1) were studied through a central composite design approach, and the results highlighted that the cocktail was able to reduce phenols by 40% at 10°C with 6.0 g l−1 of (NH4)2SO4 added.  相似文献   

19.
Emissions of greenhouse gases from ponds constructed for nitrogen removal   总被引:6,自引:0,他引:6  
Methane and carbon dioxide emission from three constructed ponds were monitored during an annual cycle. Water temperature was a good predictor of methane emission in all three ponds. In the most intensively studied pond, nitrate concentration in the bottom water could further explain the amount of methane emitted. When water temperature exceeded 15 °C between 1 and 54 mg, CH4 m−2 h−1 was emitted on all occasions, while at temperatures below 10 °C, less than 0.6 mg CH4 m−2 h−1 was emitted. The flux of carbon dioxide differed between the ponds and no consistent patterns were found. In a laboratory study at 20 °C, we showed that high, but naturally occurring, nitrate concentrations (8 and 16 mg NO3–N l−1) constrained the production of methane compared to the treatment with no nitrate addition. Nitrous oxide production was positively correlated with nitrate concentration. Carbon dioxide production was highest at the highest nitrate concentration, which indicates that increased nitrate loading on ponds and wetlands will stimulate organic matter decomposition rates. Our conclusion is that these ponds constructed for nitrate removal emit greenhouse gases comparable to lakes in the temperate region.  相似文献   

20.
Optimal operational factors for nitrite accumulation in batch reactors   总被引:12,自引:0,他引:12  
Bae W  Baek S  Chung J  Lee Y 《Biodegradation》2001,12(5):359-366
The environmental factors that affected the accumulation of nitrite in nitrifying reactors were investigated using a mixed culture. A batch reactor with 50 mg-N/l of ammonia was used. The pH, temperature and dissolved oxygen concentration were varied. The concentration of unionized free ammonia also changed with the oxidation of ammonia and the variation of pH and temperature. The accumulation of nitrite was affected sensitively by pH and temperature. A higher nitrite concentration was observed at pH 8-9 or temperature around 30 °C. The dissolved oxygen also affected, giving the highest nitrite accumulation at around 1.5 mg/l. These were the favoredconditions for nitrite production. The free ammonia concentration influenced thenitrite accumulation also, by inhibiting nitrite oxidation. The inhibition becameapparent at a concentration of approximately 4 mg/l or above, but insignificant atbelow 1 mg/l. Thus, simultaneously high free ammonia concentration and maximumspecific ammonia-oxidation rate (above 15 × 10-3 mg-N/mg-VSSh)were needed for a significant nitrite accumulation. When the two conditions were met, thenthe highest accumulation was observed when the ratio of the maximum specific oxidationrate of ammonia to the maximum specific oxidation rate of nitrite (ka/kn) was highest.Under the optimal operating conditions of pH 8, 30 °C and 1.5 mg/l of dissolvedoxygen, as much as 77% of the removed ammonia accumulated in nitrite.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号