首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Anestrous lighthorse mares were treated in December with dihydrotestosterone (DHT; 150 micrograms/kg of body weight), progesterone (P; 164 micrograms/kg), both DHT and P (DHT+P), testosterone (T; 150 micrograms/kg), or vehicle (n = 4/group). Daily blood sampling was started on Day 1, and on Day 4 all mares were administered a pretreatment injection of gonadotropin-releasing hormone (GnRH) and were bled frequently to characterize the responses of follicle-stimulating hormone (FSH) and luteinizing hormone (LH) concentrations. Treatment injections were given on Day 4 and then daily through Day 17. On Day 18, all mares were again administered GnRH and were bled frequently. Treatment of mares with DHT, P, or T increased (p less than 0.01) plasma concentrations of these steroids to approximately 1.5 ng/ml during the last 10 days of treatment. There was no effect (p greater than 0.10) of treatment on LH or FSH concentrations in daily blood samples. Relative to the pretreatment GnRH injection, mares treated with T or DHT+P secreted approximately 65% more (p less than 0.01) FSH in response to the post-treatment GnRH injection; FSH response to the second GnRH injection was not altered (p greater than 0.10) in control mares or in DHT- or P-treated mares. There was no effect of any steroid treatment on LH secretion after administration of GnRH (p greater than 0.10). Averaged over all mares, approximately 94 times more FSH than LH was secreted in response to injection of GnRH.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
The effect of porcine follicular fluid on estradiol and progesterone secretion was examined using a rat granulosa cell culture with FSH and testosterone in the medium. Follicular fluids from small (less than 5 mm) and large (greater than 6 mm) follicles (SFFI, LFF1) were treated with charcoal, and then fractionated by filtration through an Amicon XM-50 and an PM-10 membrane. The addition of 25% SFF1 and LFF1 into the culture system significantly inhibited estradiol and progesterone secretion (P less than 0.005). These inhibitory activities were observed in PM-10 retentates (10,000-50,000 MW) and filtrates (less than 10,000 MW) of SFF1 and LFF1. The addition of XM-50 filtrates (less than 50,000 MW) of SFF1 and LFF1 caused a dose-dependent inhibition of estradiol and progesterone secretion. The dose-response relationship between the filtrates and estradiol secretion was linear with a significant correlation coefficient. The addition of the filtrates exerted no inhibitory effect on the growth of the cells cultured. XM-50 filtrate of LFF1 from a batch with a low ratio of small/large follicles showed a lower inhibitory activity on estradiol secretion than that of LFF1, while the inhibitory activities in both filtrates on progesterone secretion were almost equivalent. These results suggest that the follicular fluid of small porcine follicle contains nonsteroidal regulators capable of inhibiting estradiol and progesterone secretion by cultured rat granulosa cells, and that the estradiol secretion inhibitor activity decreases in the fluid of large follicle while the progesterone secretion inhibitor activity does not decrease in it.  相似文献   

3.
The effects of RU 486 on the modulation of LH release by progesterone were investigated in cultured anterior pituitary cells from ovariectomized adult female rats. The inhibitory effect of progesterone on LH secretion was demonstrable in estrogen-treated pituitary cells, in which addition of 10(-6) M progesterone to cells cultured in the presence of 10(-9) M estradiol for 52 h reduced the LH response to GnRH (10(-11) to 10(-7) M). When RU 486 was superimposed upon such combined treatment with estradiol and progesterone, the suppressive effect of progesterone on GnRH-induced LH release was completely abolished. The converse (facilitatory) effect of progesterone on LH secretion was observed in pituitary cells pretreated with 10(-9) M estradiol for 48 h and then with 10(-6) M progesterone for 4 h. When RU 486 was added together with progesterone during the 4 h treatment period, the facilitatory effect of progesterone was blocked and LH release fell to below the corresponding control value. The direct effect of RU 486 on LH secretion in the absence of exogenous progesterone was evaluated in cells cultured in the absence or presence of 10(-9) M estradiol and then treated for 4 to 24 h with increasing concentrations of RU 486 (10(-12) to 10(-5) M) and stimulated with GnRH (10(-9) M) during the last 3 h of incubation. In estrogen-deficient cultures, 4 h exposure to RU 486 concentrations of 10(-6) M and above decreased the LH response to GnRH by up to 50%. In cultures pretreated with 10(-9) M estradiol, GnRH-stimulated LH responses was inhibited by much lower RU 486 concentrations, of 10(-9) M and above. After 24 h of incubation the effects of RU 486 were similar in control and estradiol-pretreated pituitary cell cultures. Thus, RU 486 alone has a significant inhibitory effect on LH secretion that is enhanced in the presence of estrogen. The antiprogestin is also a potent antagonist of both the inhibitory and the facilitatory actions of progesterone upon pituitary gonadotropin release in vitro.  相似文献   

4.
Akira A  Ohmura H  Uzumcu M  Araki T  Lin YC 《Theriogenology》1994,41(7):1489-1497
The present study investigated whether gossypol inhibited aromatase activity in cultured porcine granulosa cells. Aromatase activity was assayed by measuring (3)H-H(2)O released from [1beta-(3)H]-androstenedione. First, immature porcine granulosa cells were cultured with various doses of follicle stimulating hormone (FSH, 1 to 1000 ng/ml) for 1 to 5 d to determine optimal culture conditions for aromatase activity assay. Second, porcine granulosa cells were cultured with or without FSH in the presence or absence of gossypol. Gossypol, at 4 muM, significantly inhibited FSH-induced aromatase activity while showing no effect on basal aromatase activity. Gossypol did not inhibit cell proliferation during cell culture. These results suggest that gossypol inhibits aromatase activity by interfering with FSH induction of aromatase in cultured porcine granulosa cells.  相似文献   

5.
The effects of estrogens on ovarian aromatase activity were investigated in vitro using granulosa cells from immature hypophysectomized estrogen-primed rats. The cells were cultured for 3 days in an androgen-free medium in the presence of follicle-stimulating hormone (FSH), with or without the specified estrogen. After washing, the cells were reincubated for 5 h with 10(-7) M androstenedione, and the formation of estrogens was measured. Estrogen production by control and diethylstilbestrol-treated cells was negligible, while FSH stimulated aromatase activity. Furthermore, concomitant treatment with diethylstilbestrol led to dose-dependent increases in the FSH-induced aromatase activity with an ED50 value of 4 X 10(-9) M and an apparent Vmax value 12- to 16-fold higher than those induced by FSH alone. The direct stimulatory effect of estrogens was time-dependent and was not accounted for by increases in cell protein. Various native and synthetic estrogens also augmented the FSH induction of aromatases (native estrogens: estradiol-17 beta = estrone greater than estradiol-17 alpha greater than estriol; synthetic estrogens: hexestrol greater than moxestrol greater than ethinyl estradiol much greater than chlorotrianisene and mestranol). The effect of estradiol-17 beta was dose-dependent with an ED50 value of 9 X 10(-9) M, which is within the physiological levels of follicular estradiol-17 beta. Although treatment with androgens also enhanced the FSH-induced aromatases, treatment with a progestin (R5020) or a mineralocorticoid (aldosterone) was without effect. Thus, estrogens directly augment the stimulation of granulosa cell aromatase activity by FSH. Follicular estrogens may activate intraovarian autoregulatory positive feedback mechanisms to enhance their own production, resulting in selective follicle maturation and the preovulatory estrogen surge.  相似文献   

6.
T Murata  S Y Ying 《Life sciences》1991,49(6):447-453
Interleukin-1 beta (IL-1 beta) at doses of 0.15 and 1.5 nM significantly inhibited FSH secretion and stimulated LH secretion by cultured rat pituitary cells after 24-72 hr incubation whereas 15 pM of IL-1 beta was not effective. Treatment with IL-1 beta for 12-48 hr did not affect intracellular content of FSH. However, treatment with 0.15 and 1.5 nM of IL-1 beta for 72 hr significantly suppressed intracellular content of FSH whereas various doses of IL-1 beta incubated with the cells for 12-72 hr showed no effect on the intracellular content of LH. Pretreatment with IL-1 beta for 48 hr inhibited both GnRH-mediated LH and FSH secretions by the pituitary. The secretion of FSH and LH mediated by an activator of protein kinase C, phorbol 12-myristate 13-acetate, was also significantly suppressed by pretreatment with IL-1 beta for 48 hr. These results suggest that (a) IL-1 beta has opposite effects on the secretion of LH and FSH and (b) pretreatment with IL-1 beta suppresses GnRH-mediated stimulation of LH and FSH by the pituitary and this suppressive effect of IL-1 beta may involve the suppression of a protein kinase C-dependent mechanism.  相似文献   

7.
8.
Interleukin 8 (IL-8) is a chemoattractant involved in the recruitment and activation of neutrophils and is associated with the ovulate process. We examined the possible role of IL-8 in steroid production by bovine granulosa cells before and after ovulation. The concentration of IL-8 in the follicular fluid of estrogen-active dominant (EAD) and pre-ovulatory follicles (POF) was higher than that of small follicles (SF). CXCR1 mRNA expression was higher in the granulosa cells of EAD and POF than that of SF. In contrast, CXCR2 mRNA expression was lower in granulosa cells of EAD and POF than in SF. IL-8 inhibited estradiol (E2) production in follicle-stimulating hormone (FSH)-treated granulosa cells at 48 h of culture. IL-8 also suppressed CYP19A1 mRNA expression in FSH-treated granulosa cells. IL-8 stimulated progesterone (P4) production in luteinizing hormone (LH)-treated granulosa cells at 48 h of culture. Although IL-8 did not alter the expression of genes associated with P4 production, it induced StAR protein expression in LH-treated granulosa cells. The expression of CXCR1 mRNA in corpus luteum (CL) did not change during the luteal phase. In contrast, the expression of CXCR2 mRNA in middle CL was significantly higher than in early and regression CL during the luteal phase. In luteinizing granulosa cells, an in vitro model of granulosa cell luteinization, CXCR2 mRNA expression was downregulated, whereas CXCR1 mRNA expression was unchanged. IL-8 also stimulated P4 production in luteinizing granulosa cells. These data provide evidence that IL-8 functions not only as a chemokine, but also act as a regulator of steroid synthesis in granulosa cells to promote luteinization after ovulation.  相似文献   

9.
The effect of insulin and insulin-like growth factor-1 (IGF-1) on progesterone secretion by porcine granulosa cells and their modulatory effect on follicle-stimulating hormone (FSH)-induced responses were examined. For comparative purposes, growth hormone (GH), previously shown to stimulate IGF-1 secretion, was also included. Granulosa cells from ovarian follicles (3 to 5 mm) were cultured in multiwell plates for the first 48 hours, either in the presence or absence of 1% fetal bovine serum (FBS). Following plating, all cultures were maintained in serum-free media. The addition of only insulin, but not IGF-1 or GH, enhanced progesterone secretion under both culture conditions. When low-density lipoprotein was provided as steroid substrate, a stimulatory effect of insulin on progesterone accumulation was observed with a minimum dose of 10 ng/ml. Granulosa cells cultured in serum-free media from the time of plating secreted less progesterone and were less responsive to FSH compared with cultures plated with 1% FBS. Only insulin, but not IGF-1, enhanced FSH responses to threefold in cells cultured with 1% FBS. However, when cells were cultured in serum-free media from the time of plating, both insulin and IGF-1, but not GH, potentiated the responses to FSH, but insulin was more potent than IGF-1. Insulin-like growth-factor-1 binding studies with granulosa cells indicate the presence of specific high-affinity binding sites (Kd 3.96 nM). A dose of 100 ng/ml of insulin had negligible cross-reactivity with IGF-1 receptors.  相似文献   

10.
Previous work has indicated that in long-term ovariectomized rats a potent antagonist to gonadotropin-releasing hormone (GnRH) suppressed serum luteinizing hormone (LH) more successfully than follicle-stimulating hormone (FSH). The present studies examined whether the rise in serum FSH which occurs acutely after ovariectomy, or during the proestrous secondary surge, depends on GnRH. In Experiment A, rats were ovariectomized at 0800 h of metestrus and injected with (Ac-dehydro-Pro1, pCl-D-Phe2, D-Trp3,6, NaMeLeu7)-GnRH (Antag-I) at 1200 h of the same day, or 2 or 5 days later. Antag-I blocked the LH response completely, but only partially suppressed serum FSH levels. Experiment B tested a higher dose of a more potent antagonist [( Ac-3-Pro1, pF-D-Phe2, D-Trp3,6]-GnRH; Antag-II) injected at the time of ovariectomy. The analog suppressed serum LH by 79% and FSH by 30%. Experiment C examined the effect of Antag-II on the day of proestrus on the spontaneous secondary surge of FSH, as well as on a secondary FSH surge which can be induced by exogenous LH. Antag-II, given at 1200 h proestrus, blocked ovulation and the LH surge expected at 1830 h, as well as increases in serum FSH which occur at 1830 h and at 0400 h. Exogenous LH triggered a rise in FSH in rats suppressed by Antag-II. In Experiment D proestrous rats were injected with Antag-II at 1200 h and ovariectomized at 1530 h. By 0400 h the antag had suppressed FSH in controls, but in the ovariectomized rats, a vigorous FSH response occurred.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
Follicle-stimulating hormone (FSH) enhances the conversion of testosterone or androstenedione into estradiol by stimulating the aromatase enzyme system. Estradiol also enhances FSH action. Thus, a synergistic action of FSH and estradiol may be required for maturation of ovarian follicles. We hypothesized that estradiol may be required for FSH action. Thus, blocking estrogen synthesis should prevent FSH-induced increases in FSH receptors. Hypophysectomized rats were divided into five groups and injected subcutaneously with: 1) saline, 2) cyanoketone (0.05 mg, blocks the conversion of pregnenolone to progesterone), 3) ovine FSH (oFSH, 200 micrograms), 4) cyanoketone then oFSH 24 h later, or 5) cyanoketone plus estradiol [or progesterone, testosterone, promegestrone (R5020), dihydrotestosterone (DHT), 2 mg], then FSH 24 h later. Animals were decapitated at 0, 12 or 24 h after an injection of oFSH, and membrane receptors for FSH and luteinizing hormone (LH), plus nuclear receptors for estradiol from granulosa cells, were measured. LH receptor levels were increased only after administration of FSH and estradiol. At 0 and 24 h, numbers of FSH or estradiol receptors were similar in saline- and cyanoketone-treated animals. FSH alone increased (P less than 0.01) FSH and estradiol receptors 3-fold and 4-fold, respectively, over controls by 12 and 24 h. Cyanoketone prevented these increases in FSH and estradiol receptors. Estradiol replacement fully reversed the effects of cyanoketone on FSH action. Replacement with progesterone and testosterone was able to only partially restore levels of FSH receptors; however, estradiol receptor numbers were also increased.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
Intrafollicular factors play an important role in folliculogenesis. The follicle-stimulating hormone (FSH)-binding inhibitor (FSHBI), purified by our laboratory from human ovarian follicular fluid, has been shown to suppress ovulation and induce follicular atresia/apoptosis in mice as well as impair fertility in marmosets, the New World monkeys. The octapeptide, a peptide corresponding to the N-terminal region of human FSHBI (hFSHBI), has been synthesized and also shows FSHBI activity in vitro. In the present study, we have attempted to identify the mechanism of action of the peptide in granulosa cell cultures. Rat granulosa cell cultures were treated with varying concentrations of the octapeptide or partially purified hFSHBI (gel chromatography fraction hGF 2) in the presence or absence of human FSH (hFSH) and the amount of progesterone (P;4) secreted in the culture supernatants after 3 h/48 h was estimated. Both hGF2 and the octapeptide failed to alter basal levels as well as 8-bromo cAMP-induced P;4 production, while FSH-induced P 4 secretion was inhibited in a dose-dependent manner. These studies reveal that the octapeptide, a fragment of FSHBI, and the native protein have similar activity in vitro and both compounds alter FSH action at the receptor level upstream of cAMP formation.  相似文献   

13.
14.
The effects of FSH to increase the activity of aromatase, as well as the synthesis of the components of the aromatase enzyme complex, have been studied in human ovarian granulosa cells obtained from women undergoing oocyte retrieval. FSH increased aromatase activity, as well as the synthesis of aromatase cytochrome P-450 (P-450AROM) in a time-dependent fashion, whereas in the absence of FSH, both activity and synthesis declined with duration of culture. The effect of FSH was mimicked by forskolin, an activator of adenylate cyclase. FSH also increased the synthesis of NADPH-cytochrome P-450 reductase, but to a relatively modest extent. The levels of hybridizable mRNA species encoding cytochrome P-450AROM of lengths 3.0, 2.4, and 1.6 kilobases were also increased with FSH treatment. It is concluded that the regulation of aromatase activity by FSH in human granulosa cells is mediated primarily by changes in the synthesis of cytochrome P-450AROM, that this action of FSH is mediated by cAMP, and that the changes in cytochrome P-450AROM synthesis are the consequences of changes in the levels of mRNA encoding this enzyme.  相似文献   

15.
Granulosa cells from small and medium porcine follicles (1-5 mm) were incubated with charcoal-treated follicular fluid from large (6-10 mm) follicles or porcine serum in the presence and absence of gonadotropin-releasing hormone (GnRH) analog and luteinizing hormone (LH) or follicle-stimulating hormone (FSH). A GnRH agonist inhibited follicular fluid's enhancement of basal and LH-stimulated progesterone secretion but did not block follicular fluid's enhancement of FSH-stimulated progesterone secretion. A GnRH antagonist mimicked follicular fluid's enhancement of basal and LH-stimulated progesterone secretion but did not mimic follicular fluid's action on FSH-stimulated progesterone secretion. When the GnRH antagonist and follicular fluid were added together, they acted synergistically in stimulating basal progesterone secretion, and were additive in enhancing LH-stimulated progesterone secretion. These observations suggest that separate follicular fluid molecules are responsible for its influence on LH and FSH actions on granulosa cells and that a GnRH-antagonist-like molecule could be responsible for some of follicular fluid's "luteinization stimulatory" action. Alternatively, the stimulatory follicular fluid molecule may not resemble GnRH but may act via a mechanism that is opposed by GnRH.  相似文献   

16.
Gossypol, a polyphenolic aldehyde, inhibits steroidogenesis and the reproductive system in both sexes. The present study was undertaken to investigate whether gossypol may affect progesterone biosynthesis in cultured porcine granulosa cells isolated from small (1-2 mm) follicles (SGC). SGC were cultured with gossypol, NO donor S-nitroso-N-acetylpenicillamine (S-NAP) or the specific NO-synthase inhibitor N-nitro-L-arginine methyl ester (L-NAME), in the presence or absence of follicular fluid isolated from large (5-8 mm) follicles (LFF) or conditioned media (CM) of granulosa cells isolated from large follicles (LGC). Gossypol enhanced the nitrite content in culture media of SGC and inhibited basal progesterone secretion by SGC. S-NAP (10(-3) M) inhibited progesterone secretion and enhanced the formation of cGMP by SGC. L-NAME had no effect on progesterone accumulation by SGC. The stimulatory effect of LFF or CM media on progesterone production by SGC in culture was also inhibited by S-NAP (10(-3)) and gossypol (10(-4) M). Moreover, gossypol inhibited forskolin-stimulated progesterone secretion, as well as substrate-enhanced conversion of 22-OH-cholesterol and pregnenolone to progesterone. These results suggest that the inhibitory effect of gossypol on progesterone secretion in culture of SGC may be mediated via NO generation.  相似文献   

17.
Five lighthorse mares were actively immunized against gonadotropin releasing hormone (GnRH) to determine the relative importance of this hypothalamic hormone in the secretion of luteinizing hormone (LH) and follicle-stimulating hormone (FSH). Five mares immunized against the conjugation protein served as controls. Mares were initially immunized in November and received secondary immunizations 4 wk later, and then at 6-wk intervals until ovariectomy in June. All mares immunized against GnRH exhibited an increase (p less than 0.01) in the binding of tritiated GnRH by plasma, an indication that antibodies against this hormone had been elicited. Concentrations of LH, FSH and progesterone in weekly blood samples were lower (p less than 0.05) in GnRH-immunized mares than in controls after approximately 4 mo of immunization. However, the LH concentrations were affected to a greater degree than were FSH concentrations. All five control mares exhibited normal cycles of estrus and diestrus in spring, whereas no GnRH-immunized mare exhibited cyclic displays of estrus up to ovariectomy. All mares were injected intravenously with a GnRH analog (which cross-reacted less than 0.1% with the anti-GnRH antibodies) in May, after all control mares had displayed normal estrous cycles, to characterize the response of LH and FSH in these mares; two days later, the mares were injected with GnRH. The LH response to the analog, which was assessed by net area under the curve, was lower (p less than 0.01) by approximately 99% in mares immunized against GnRH than in control mares. In contrast, the FSH response to the analog was similar for both groups.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
To evaluate the roles of FSH and LH in follicular growth, GnRH-immunized anestrous heifers (n = 17) were randomly assigned (Day 0) to one of three groups (n = 5 or 6). Group 1 received i.m. injections of 1.5 mg porcine FSH (pFSH) 4 times/day for 2 days; group 2 received i.v. injections of 150 microg pLH 6 times/day for 6 days; group 3 received both pFSH and pLH as described for groups 1 and 2. After slaughter on Day 6, measurements were made of follicle number and size, and follicular fluid concentrations of progesterone (P(4)), estradiol (E(2)), and aromatase activity. Injection of pFSH increased (P: < 0.01) the serum concentrations of FSH between 12 and 54 h. Infusion of pLH increased (P: < 0.05) mean and basal concentrations of LH and LH pulse frequency. Serum E(2) concentrations were higher (P: < 0.05) for heifers given pFSH + pLH than those given either pFSH or pLH alone. There was no difference (P: > or = 0.24) between treatments in the number of small follicles (<5 mm). Heifers given pFSH or pFSH + pLH had more (P: < or = 0.02) medium follicles (5.0-9.5 mm) than those that were given pLH alone (none present). Heifers given pFSH + pLH had more (P: = 0.04) large follicles (> or =10 mm) than those given either pLH or pFSH alone (none present). Overall, only 1 of 35 small follicles and 2 of 96 medium follicles were E(2)-active (i.e., E(2):P(4) >1.0), whereas 18 of 21 large follicles (all in the pFSH + pLH treatment) were E(2)-active; of these, 8 of 18 had aromatase activity. Concentrations of E(2) and E(2) activity in follicular fluid were correlated (r > or = 0.57; P: < 0.0001) with aromatase activity in heifers given pLH + pFSH. In conclusion, pLH failed to stimulate follicle growth greater than 5 mm; pFSH stimulated growth of medium follicles that were E(2)-inactive at slaughter and failed to increase serum E(2) concentrations; whereas pFSH + pLH stimulated growth of medium follicles and E(2)-active large follicles, and a 10- to 14-fold increase in serum E(2) concentrations.  相似文献   

19.
Activin A regulation of the expression of mRNA for the LH receptor, FSH receptor, and the inhibin alpha subunit as well as the effect of activin A on the secretion of progesterone were investigated in chicken granulosa cell cultures. Granulosa layers were isolated from the F(1) and F(3) + F(4) follicles from five hens, pooled according to size, dispersed, and cultured for 48 h. In experiment 1 (n = 3 replications), granulosa cells were cultured with or without highly purified ovine (o) FSH at 50 ng/ml and in the presence of 0, 10, or 50 ng/ml of recombinant chicken activin A. Experiment 2 (n = 4 replications) followed the same protocol as experiment 1, except that oFSH was replaced with oLH. Results from these experiments showed that addition of activin A to the granulosa cell cultures had no effect on the expression of mRNA for the inhibin alpha subunit or the FSH receptor, but it did affect the expression of mRNA for the LH receptor. Treatment of F(3) + F(4) granulosa cells with LH stimulated the expression of mRNA for the LH receptor; however, when LH was combined with either dose of activin A, this induction was prevented. The highest dose of activin A with or without LH resulted in decreased expression of the LH receptor compared to the untreated controls in the F(3) + F(4) cell cultures. Progesterone secretion by the granulosa cells from both follicle sizes was not altered by activin A. In experiment 3 (n = 3 replications), the effect of activin A on the growth of granulosa cells was examined with the following treatments: 0, 10, or 50 ng/ml of activin A; 50 ng/ml of either oLH or oFSH; and oLH or oFSH combined with 10 ng/ml of activin A. The highest dose of activin reduced the rate of granulosa cell proliferation in both follicle types. Growth of F(1) and F(3) + F(4) granulosa cells was stimulated by the addition of either gonadotropin, and the presence of 10 ng/ml of activin A with either gonadotropin did not alter this proliferation, except for the LH-treated F(3) + F(4) granulosa cells, in which the increase in proliferation was prevented. The results suggest that activin A could act as a local factor that regulates follicular maturation by preventing excessive or untimely LH receptor expression.  相似文献   

20.
The nature of secretion of luteinizing hormone (LH) and follicle-stimulating hormone (FSH) was followed in female rabbits on a daily basis from age 36 to 60 days by sequential 5-min blood sampling over 1- to 2-h periods each day. Both LH and FSH were found to be secreted in a pulsatile manner. The mean LH pulse amplitude over the 25 days was 0.95 +/- 0.32 ng/mL and for FSH it was 10.15 +/- 1.11 ng/mL. Mean plasma LH levels were significantly increased from 1.46 +/- 0.08 ng/mL in 36 to 42-day-old rabbits to 1.89 +/- 0.12 ng/mL in 43 to 50-day-old rabbits and remained elevated from 50 to 60 days. FSH levels during the same periods also rose significantly from 14.93 +/- 0.79 to 19.57 +/- 2.05 ng/mL. To examine the influence of endogenous opioid peptides on the release of LH and FSH in 36 to 60-day-old female rabbits, morphine sulfate at 0.2, 0.5, 2.0, and 5.0 mg/kg was administered subcutaneously after 30 min baseline sampling, and blood was taken for another 60-120 min. Morphine at all doses and at all ages inhibited the amplitude and frequency of LH pulses but had no effect on FSH secretion. To determine whether the effects of morphine on LH secretion could be reversed with naloxone, females aged 82-114 days were used. Naloxone administered 1 h after morphine reversed the inhibitory effects of morphine, whereas the simultaneous administration of naloxone with morphine had variable effects but seemed to delay the LH increase.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号