首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 472 毫秒
1.
Regenerated silk fibroin materials show properties dependent on the methods used to process them. The molecular structures of B. mori silk fibroin both in solution and in solid states were studied and compared using X-ray diffraction, FTIR, and (13)C NMR spectroscopy. Some portion of fibroin protein molecules dissolved in formic acid already have a beta-sheet structure, whereas those dissolved in TFA have some helical conformation. Moreover, fibroin molecules were spontaneously assembled into an ordered structure as the acidic solvents were removed from the fibroin-acidic solvent systems. This may be responsible for the improved physical properties of regenerated fibroin materials from acidic solvents. Regenerated fibroin materials have shown poor mechanical properties and brittleness compared to their original form. These problems were technically solved by improving the fiber forming process according to a method reported here. The regenerated fibroin fibers showed much better mechanical properties compared to the native silk fiber and their physical and chemical properties were characterized by X-ray diffraction, solid state (13)C NMR spectroscopy, SinTech tensile testing, and SEM.  相似文献   

2.
Zhou P  Xie X  Knight DP  Zong XH  Deng F  Yao WH 《Biochemistry》2004,43(35):11302-11311
Silk fibroin exists in a number of different states, such as silk I and silk II, with different properties largely defined by differences in secondary structure composition. Numerous attempts have been made to control the transitions from silk I to silk II in vitro to produce high-performance materials. Of all the factors influencing the structural compositions, pH and some metal ions play important roles. This paper focuses on the influence of pH and Ca(2+) ions on the conformational transition from silk I to silk II in regenerated (redissolved) Bombyx mori fibroin. One- and two-dimensional correlation Raman spectroscopy was used to describe qualitatively the transitions in secondary structure in silk I, silk II, and their intermediates as pH and Ca(2+) ion concentration were changed, while (13)C cross polarization magic angle spinning (CP/MAS) solid-state NMR was used to quantify these changes. We showed that conditions (low pH, pH 5.2; a defined range of Ca(2+) ion concentrations; gradual water removal) that mimic natural silk spinning promote the formations of beta-sheet and distorted beta-sheet characteristic of silk II or silk II-related intermediate. In contrast, higher pH (pH 6.9-8.0) and higher Ca(2+) ion concentrations maintain "random coil" conformations typical of silk I or silk I-related intermediate. These results help to explain why the natural silk spinning process is attended by a reduction in pH from 6.9 to 4.8 and a change in the Ca(2+) ion concentration in the gland lumen as fibroin passes from the posterior division through the secretory pathway to the anterior division.  相似文献   

3.
This paper describes the synthesis and characterization of new regenerated silk fibroin (SF)/nano-TiO(2) composite films. The preparation method, based on the sol-gel technique using butyl titanate as oxide precursor, could avoid reagglomeration of the prepared nanoparticles. Samples were characterized mainly by X-ray diffraction (XRD), ultra-violet (UV) spectroscopy, atomic force microscopy (AFM), Fourier transform infrared (FT-IR) spectroscopy, and thermogravimetric analysis (TGA). The UV and AFM results indicated that TiO(2) nanoparticles could be well dispersed inside the SF film, and the size of TiO(2) was about 80nm. The XRD and FT-IR analysis implied that the formation of nano-TiO(2) particles may induce the conformational transition of silk fibroin to a typical Silk II structure partly with the increasing of crystallinity in the composite films. Compared to the pure SF films, the mechanical and thermal properties of composite films were improved, and the solubility in water was decreased due to the conformational transition of silk fibroin to Silk II structure.  相似文献   

4.
Degradation mechanism and control of silk fibroin   总被引:1,自引:0,他引:1  
Lu Q  Zhang B  Li M  Zuo B  Kaplan DL  Huang Y  Zhu H 《Biomacromolecules》2011,12(4):1080-1086
Controlling the degradation process of silk is an important and interesting subject in the field of biomaterials. In the present study, silk fibroin films with different secondary conformations and nanostructures were used to study degradation behavior in buffered protease XIV solution. Different from previous studies, silk fibroin films with highest β-sheet content achieved the highest degradation rate in our research. A new degradation mechanism revealed that degradation behavior of silk fibroin was related to not only crystal content but also hydrophilic interaction and then crystal-noncrystal alternate nanostructures. First, hydrophilic blocks of silk fibroin were degraded. Then, hydrophobic crystal blocks that were formerly surrounded and immobilized by hydrophilic blocks became free particles and moved into solution. Therefore, on the basis of the mechanism, which enables the process to be more controllable and flexible, controlling the degradation behavior of silk fibroin without affecting other performances such as its mechanical or hydrophilic properties becomes feasible, and this would greatly expand the applications of silk as a biomedical material.  相似文献   

5.
The possibility of using wild non-mulberry silk protein as a biopolymer remains unexplored compared to domesticated mulberry silk protein. One of the main reasons for this was for not having any suitable method of extraction of silk protein fibroin from cocoons and silk glands. In this study non-bioengineered non-mulberry silk gland fibroin protein from tropical tasar silkworm Antheraea mylitta, is regenerated and characterized using 1% (w/v) sodium dodecyl sulfate (SDS). The new technique is important and unique because it uses a mild surfactant for fibroin dissolution and is advantageous over other previous reported techniques using chaotropic salts. Fabricated fibroin films are smooth as confirmed by atomic force microscopy. Circular dichroism spectrometry along with Fourier transformed infrared spectroscopy and X-ray diffraction reveal random coil/alpha-helix conformations in regenerated fibroin which transform to beta-sheets, resulting in crystalline structure and protein insolubility through ethanol treatment. Differential scanning calorimetry shows an increase in glass transition (Tg) temperature and enhanced degradation temperature on alcohol treatment. Enhanced cell attachment and viability of AH927 feline fibroblasts were observed on fibroin matrices. Higher mechanical strength along with controllable water stability of regenerated gland fibroin films make non-mulberry Indian tropical tasar silk gland fibroin protein a promising biomaterial for tissue engineering applications.  相似文献   

6.
In this paper, the spinnable regenerated silk fibroin aqueous solution with high concentration was prepared and the regenerated silk fibers were obtained from the aqueous solution by two different spinning processes at ambient temperature. The orientation of these fibers was characterized by polarizing microscope. Their secondary structure was investigated by Raman spectroscopy and related mechanical properties were also measured. These data showed that shearing is an important step for increasing orientation and silk II (β-sheet) structure, and the mechanical properties of the regenerated silk fibers can also be improved by shearing.  相似文献   

7.
X-ray diffraction measurements of regenerated Bombyx mori silk fibroin were carried out to determine its structural characteristic from an analysis of differential radial distribution functions (DRDFs). The temperature dependence of X-ray diffraction patterns from noncrystalline and crystal structures of regenerated silk fibroin was investigated using a high temperature furnace. Time resolved X-ray diffraction profiles were also obtained to construct kinematical models of structural changes caused by the addition of water. DRDFs, calculated from the experimental data, were compared with the DRDFs simulated on the basis of the Monte Carlo method. In order to model the noncrystalline structures, structural units were assumed to be parts of the crystalline structure of silk and those with appropriate structural defects reported previously. From the comparison of experimental and simulated DRDFs, it was determined that noncrystalline regenerated silk consisted of locally ordered atomic sheets similar to the atomic arrangement in the silk I crystal (Type-I sheets), and the final state of the structural change was noncrystalline, consisting of small crystallites, the structure of which is similar to that of silk II (Type-II crystallites). Time resolved DRDFs were also qualitatively interpreted by both the ordering of Type-I sheets and structural changes from Type-I to Type-II. The formation of the small Type-II crystallites obtained in this study was consistent with the nucleation of silk II by birefringence measurements of silk glands and the spinneret of Bombyx mori silkworm reported previously. X-ray diffraction should be a useful technique to understand the structural characteristics of noncrystalline organic materials.  相似文献   

8.
X-ray diffraction measurements of regenerated Bombyx mori silk fibroin were carried out to determine its structural characteristic from an analysis of differential radial distribution functions (DRDFs). The temperature dependence of X-ray diffraction patterns from noncrystalline and crystal structures of regenerated silk fibroin was investigated using a high temperature furnace. Time resolved X-ray diffraction profiles were also obtained to construct kinematical models of structural changes caused by the addition of water. DRDFs, calculated from the experimental data, were compared with the DRDFs simulated on the basis of the Monte Carlo method. In order to model the noncrystalline structures, structural units were assumed to be parts of the crystalline structure of silk and those with appropriate structural defects reported previously. From the comparison of experimental and simulated DRDFs, it was determined that noncrystalline regenerated silk consisted of locally ordered atomic sheets similar to the atomic arrangement in the silk I crystal (Type-I sheets), and the final state of the structural change was noncrystalline, consisting of small crystallites, the structure of which is similar to that of silk II (Type-II crystallites). Time resolved DRDFs were also qualitatively interpreted by both the ordering of Type-I sheets and structural changes from Type-I to Type-II. The formation of the small Type-II crystallites obtained in this study was consistent with the nucleation of silk II by birefringence measurements of silk glands and the spinneret of Bombyx mori silkworm reported previously. X-ray diffraction should be a useful technique to understand the structural characteristics of noncrystalline organic materials.  相似文献   

9.
Phase behavior and hydration of silk fibroin   总被引:2,自引:0,他引:2  
The osmotic stress method was applied to study the thermodynamics of supramolecular self-assembly phenomena in crystallizable segments of Bombyx mori silkworm silk fibroin. By controlling compositions and phases of silk fibroin solution, the method provided a means for the direct investigation of microscopic and thermodynamic details of these intermolecular interactions in aqueous media. It is apparent that as osmotic pressure increases, silk fibroin molecules are crowded together to form silk I structure and then with further increase in osmotic pressure become an antiparallel beta-sheet structure, silk II. A partial ternary phase diagram of water-silk fibroin-LiBr was constructed based on the results. The results provide quantitative evidence that the silk I structure must contain water of hydration. The enhanced control over structure and phase behavior using osmotic stress, as embodied in the phase diagram, could potentially be utilized to design a new route for water-based wet spinning of regenerated silk fibroin.  相似文献   

10.
New process to form a silk fibroin porous 3-D structure   总被引:1,自引:0,他引:1  
Tamada Y 《Biomacromolecules》2005,6(6):3100-3106
A new process to form fibroin spongy porous 3-D structure is reported herein. The process involves freezing and thawing fibroin aqueous solution in the presence of a small amount of an organic solvent. The process requires no freeze-drying, chemical cross-linking, or the aid of other polymeric materials. The solvent concentration, fibroin concentration, freezing temperature, and freezing duration affect the sponge formation, its porous structure, and its mechanical properties. Measurements by XRD and FTIR indicate that silk I and silk II crystalline structures exist in the fibroin sponge and that the secondary structure of fibroin is transformed to a beta-sheet from a random coil during this process. The tensile strength decreased slightly, but the fibroin sponge showed no deformation after autoclaving. Therefore, the fibroin sponge was sterilized using an autoclave. For 3 weeks, MC3T3 cells proliferated in the sterilized fibroin sponge. The fibroin sponge formed by this new process is applicable as a tissue-engineering scaffold because it is formed from biocompatible pure silk fibroin and offers both porous structure and mechanical properties that are suitable for cell growth and handling.  相似文献   

11.
摘要:丝素蛋白是一种天然的高分子纤维蛋白,其结构的特殊性决定了较好的机械性能,再因其优良的生物相容性、降解产物无毒等特点,被广泛用于各种材料的研究。通过各种化学修饰和负载生长因子等,使丝素蛋白在体内外具有促进成纤维细胞增殖分化的作用,拥有诱导创面愈合的功能,同时其可部分降解,具有缓释性能好,柔韧性强,透气以及透水等较好的理化性质不但在皮肤组织工程学中的广泛的应用,并且在敷料领域的研究也显示了其治疗烧烫伤、创伤达到抑制疤痕、促进伤口快速愈合的治疗效果。总之,通过改良丝素蛋白材料的加工方法,通过化学修饰、其他物质复合等手段得到适合于皮肤修复的具有优良性能的各种材料,是具有很大潜力的极具临床价值的皮肤修复材料。本文旨在综述国内及国外学者的各种关于丝素蛋白生物材料治疗皮肤损伤的研究最新进展。  相似文献   

12.
The structural evolution of regenerated Bombyx mori silk fibroin during shearing with a Couette cell has been studied in situ by synchrotron radiation small- and wide-angle x-ray scattering techniques. An elongation of fibroin molecules was observed with increasing shear rate, followed by an aggregation phase. The aggregates were found to be amorphous with beta-conformation according to infrared spectroscopy. Scanning x-ray microdiffraction with a 5 microm beam on aggregated material, which had solidified in air, showed silk II reflections and a material with equatorial reflections close to the silk I structure reflections, but with strong differences in reflection intensities. This silk I type material shows up to two low-angle peaks suggesting the presence of water molecules that might be intercalated between hydrogen-bonded sheets.  相似文献   

13.
不同钙-醇溶解体系丝素蛋白的制备及表征研究   总被引:1,自引:0,他引:1  
采用 4种中性盐溶液 Ca(NO3)24H2O 甲醇、Ca(NO3)24H2O 乙醇、CaCl2 甲醇 水和 CaCl2 乙醇 水(摩尔比分别为 1∶2、1∶2、1∶2∶8、1∶2∶8)处理蚕丝纤维,透析后经冷冻干燥制成固体,利用SDS PAGE、电镜扫描和红外光谱对制得的固体进行表征。SDS PAGE结果表明:Ca(NO3)24H2O 醇体系降解丝素蛋白较 CaCl2 醇 水体系降解程度高;电镜扫描的结果表明 Ca(NO3)24H2O 甲醇和 CaCl2 乙醇 水溶解体系处理的丝素蛋白溶解比较完全,Ca(NO3)24H2O 甲醇处理的丝素蛋白冻干后为颗粒状,而 CaCl2 乙醇 水处理的丝素蛋白冻干后为片状。红外光谱的结果表明:4种溶液处理后的丝素蛋白构象均介于 β折叠和无规则卷曲之间,从而为丝素蛋白在药物缓释载体领域的应用提供了一定的理论依据。  相似文献   

14.
Chen X  Shao Z  Knight DP  Vollrath F 《Proteins》2007,68(1):223-231
Time-resolved FTIR analysis was used to monitor the conformation transition induced by treating regenerated Bombyx mori silk fibroin films and solutions with different concentrations of ethanol. The resulting curves showing the kinetics of the transition for both films and fibroin solutions were influenced by the ethanol concentration. In addition, for silk fibroin solutions the protein concentration also had an effect on the kinetics. At low ethanol concentrations (for example, less than 40% v/v in the case of film), films and fibroin solutions showed a phase in which beta-sheets slowly formed at a rate dependent on the ethanol concentration. Reducing the concentration of the fibroin in solutions also slowed the formation of beta-sheets. These observations suggest that this phase represents a nucleation step. Such a nucleation phase was not seen in the conformation transition at ethanol concentrations > 40% in films or > 50% in silk fibroin solutions. Our results indicate that the ethanol-induced conformation transition of silk fibroin in films and solutions is a three-phase process. The first phase is the initiation of beta-sheet structure (nucleation), the second is a fast phase of beta-sheet growth while the third phase represents a slow perfection of previously formed beta-sheet structure. The nucleation step can be very fast or relatively slow, depending on factors that influence protein chain mobility and intermolecular hydrogen bond formation. The findings give support to the previous evidence that natural silk spinning in silkworms is nucleation-dependent, and that silkworms (like spiders) use concentrated silk protein solutions, and careful control of the pH value and metallic ion content of the processing environment to speed up the nucleation step to produce a rapid conformation transition to convert the water soluble spinning dope to a tough solid silk fiber.  相似文献   

15.
Protein structural transitions and beta-sheet formation are a common problem both in vivo and in vitro and are of critical relevance in disparate areas such as protein processing and beta-amyloid and prion behavior. Silks provide a "databank" of well-characterized polymorphic sequences, acting as a window onto structural transitions. Peptides with conformationally polymorphic silk-like sequences, expected to exhibit an intractable beta-sheet form, were characterized using Fourier transform infrared spectroscopy, circular dichroism, and electron diffraction. Polymorphs resembling the silk I, silk II (beta-sheet), and silk III (threefold polyglycine II-like helix) crystal structures were identified for the peptide fibroin C (GAGAGS repetitive sequence). Two peptides based on silk amorphous sequences, fibroin A (GAGAGY) and fibroin V (GDVGGAGATGGS), crystallized as silk I under most conditions. Methanol treatment of fibroin A resulted in a gradual transition from silk I to silk II, with an intermediate state involving a high proportion of beta-turns. Attenuated total reflectance Fourier transform infrared spectroscopy has been used to observe conformational changes as the peptides adsorb from solution onto a hydrophobic surface. Fibroin C has a beta-strand structure in solution but adopts a silk I-like structure upon adsorption, which when dried on the ZnSe crystal contains silk III crystallites.  相似文献   

16.
There are still several problems associated with the spinning of dialyzed silk fibroin solutions. In this work some of these problems have been examined. The calcium nitrate tetrahydrate-methanol system was used to dissolve the silk fibroin. A compositional phase diagram was constructed at various concentrations of the solvent system. Regenerated fibroin powders from undialyzed fibroin solution in several coagulants showed different conformations. Regenerated powders from several coagulants except methanol and ethanol were resoluble in water. Atomic absorption analysis revealed that the calcium cations strongly interact with fibroin molecules in dialyzed fibroin solution, which may interfere with the regeneration of a strong fiber. Kinetic studies to determine the diffusion coefficient of methanol into dialyzed and concentrated fibroin solution were reported. The properties of both original and regenerated fibroin such as solubility in water and thermal behaviors using DSC were compared. Regenerated fibroin fiber was spun by the wet spinning method. An X-ray diffractogram showed that the regeneration process decreased the crystallinity of regenerated fibroin fiber. SEM images of the surface and cross section of the regenerated fibroin fibers were discussed.  相似文献   

17.
Bombyx mori silk fibroin molecule is known to exist in two distinct structural forms: silk I (unprocessed silk fibroin) and silk II (processed silk fibroin). Using synthetic peptides, we attempt to explore the structural role played by Ser and Tyr residues on the appearance of silk I structural form of the fibroin. Twelve selected peptides (1-12) incorporating Ser and Tyr residues in the (Ala-Gly)(n) copolypeptide, that is, the sequences mimicking the primary structure of B. mori silk fibroin molecule, have been investigated under the silk I state, employing high-resolution (13)C cross-polarization/magic-angle spinning (CP/MAS) NMR spectroscopy. To acquire the silk I structural form, all the peptides were dissolved in 9 M LiBr and then dialyzed extensively against water, as established previously for the synthetic (Ala-Gly)(15) copolypeptide and B. mori silk fibroin. The diagnostic line shape of the Ala C(beta) peaks and the conformation-dependent (13)C chemical shifts of Ala and Gly resonances are presented to analyze and characterize the structural features. The results indicate that the incorporation of one Ser and/or one Tyr residue(s) at selected position in the basic (Ala-Gly)(15) sequence tend to retain predominantly the silk I structure. Conversely, the repeat pentameric and octameric Ala-Gly-Ser-Gly-Ala-Gly sequences, for example, (Ala-Gly-Ser-Gly-Ala-Gly)(5) or (Ala-Gly-Ser-Gly-Ala-Gly)(8), preferred predominantly the silk II form. The peptide sequences incorporating Ser and Tyr residue(s) into repeat Ala-Gly-Ser-Gly-Ala-Gly sequences, however, adopted the silk II structure with certain content structural heterogeneity or randomness, more pronounced for specific peptides studied. Interestingly, the crystalline Cp fraction of B. mori silk fibroin, when mixed with (Ala-Gly-Ser-Gly-Ala-Gly)(5) sequence in a 5:1 molar ratio, dissolved in 9 M LiBr, and dialyzed against distilled water, favor the silk I form. The finding tends to suggest that the less stable silk I form in (Ala-Gly-Ser-Gly-Ala-Gly)(n) sequences is likely to be induced and facilitated via intermolecular interactions with the Cp fraction, which predominantly prefers the silk I form under similar conditions; however, the hydrogen-bond formation involving O(gamma)H groups of the Ser residues may have some implications.  相似文献   

18.
In tissue engineering, chemical crosslinking is widely used for conjugating two or more biomaterials to mainly control biodegradability and strength. For example, Thai silk fibroin/gelatin scaffold will offer mechanical strength from Thai silk fibroin and cell attraction from gelatin. However, chemical crosslinking requires crosslinking agent which could potentially pose negative impact from remaining trace amount of chemicals especially in medical application. Here we present an alternative approach to chemical crosslinking—a balance electrostatic blending approach. In this approach, two opposite charge biomaterials were selected for blending, with different ratios. Both materials were bound together with electrostatic force. The maximum binding was achieved when mixture electric potential approaches zero. In this work, we compared this approach with traditionally chemical crosslinking in terms of physical appearance, binding effectiveness, mechanical strength (in dry/wet conditions), in vitro biodegradation, and cell proliferation. We found that 50/50 weight ratio of Thai silk fibroin/gelatin scaffold had almost comparable properties to chemical crosslinked scaffold. It has similar appearance, binding effectiveness, and affinity for cell proliferation. For mechanical properties, even this approach yields lower dry compressive modulus compared with chemical crosslinking. But in wet condition, the compressive modulus from both methods is similar. However, the biodegradation time of non-crosslinked scaffolds is slightly faster than that of chemical crosslinked ones. These results demonstrate that a balance electrostatic approach is an alternative approach to chemical crosslinking when there is a concern of remaining trace amount of crosslinking agent in medical application.  相似文献   

19.
Silk-based medical products have a long history of use as a material for surgical sutures because of their desirable mechanical properties. However, silk fibroin fabric has been reported to be haemolytic when in direct contact with blood. The layer-by-layer self-assembly technique provides a method for surface modification to improve the biocompatibility of silk fibroin fabrics. Regenerated silk fibroin and alginate, which have excellent biocompatibility and low immunogenicity, are outstanding candidates for polyelectrolyte deposition. In this study, silk fabric was degummed and positively charged to create a silk fibroin fabric that could undergo self-assembly. The multilayer self-assembly of the silk fibroin fabric was achieved by alternating the polyelectrolyte deposition of a negatively charged alginate solution (pH = 8) and a positively charged regenerated silk fibroin solution (pH = 2). Finally, the negatively charged regenerated silk fibroin solution (pH = 8) was used to assemble the outermost layer of the fabric so that the surface would be negatively charged. A stable structural transition was induced using 75% ethanol. The thickness and morphology were characterised using atomic force microscopy. The properties of the self-assembled silk fibroin fabric, such as the bursting strength, thermal stability and flushing stability, indicated that the fabric was stable. In addition, the cytocompatibility and haemocompatibility of the self-assembled silk fibroin fabrics were evaluated. The results indicated that the biocompatibility of the self-assembled multilayers was acceptable and that it improved markedly. In particular, after the self-assembly, the fabric was able to prevent platelet adhesion. Furthermore, other non-haemolytic biomaterials can be created through self-assembly of more than 1.5 bilayers, and we propose that self-assembled silk fibroin fabric may be an attractive candidate for anticoagulation applications and for promoting endothelial cell adhesion for vascular prostheses.  相似文献   

20.
Silk fibroin demonstrates great biocompatibility and is suitable for many biomedical applications, including tissue engineering and regenerative medicine. Current research focuses on manipulating the physico‐chemical properties of fibroin, and examining the effect of this manipulation on firobin's biocompatibility. Regenerated silk fibroin was modified by in vitro enzymatic phosphorylation and cast into films. Films were produced by blending, at several ratios, the phosphorylated and un‐phosphorylated fibroin solutions. Fourier transform infra‐red spectroscopy was used to determine the specific P–OH vibration peak, confirming the phosphorylation of the regenerated silk fibroin solution. Differential scanning calorimetry showed that phosphorylation altered the intra‐ and inter‐molecular interactions. Further experiments demonstrated that phosphorylation can be used to tailor the hydrophylicity/hydrophobicity ratio as well as the crystalinity of silk fibroin films. Release profiling of a model drug was highly dependent on silk modification level. Cytotoxicity assays showed that exposure to lixiviates of phosphorylated films only slightly affected cellular metabolism and proliferation, although direct contact resulted in a strong direct correlation between phosphorylation level and cell proliferation. This new method for tuning silk biomaterials to obtain specific structural and biochemical features can be adapted for a wide range of applications. Phosphorylation of silk fibroins may be applied to improve the cytocompatibility of any silk‐based device that is considered to be in contact with live animals or human tissues.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号