首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have previously noted that the Physicians' Desk Reference (PDR) contains over 80 instances in which a drug elicited a positive genotoxic response in one or more in vitro assays, despite having no obvious structural features predictive of covalent drug/DNA interactive potential or known mechanistic basis. Furthermore, in most cases, these drugs were "missed" by computational genotoxicity-predicting models such as DEREK, MCASE and TOPKAT. We have previously reported the application of a V79 cell-based model and a 3D DNA docking model for predicting non-covalent chemical/DNA interactions. Those studies suggested that molecules that are very widely structurally diverse may be capable of intercalating into DNA. To determine whether such non-covalent drug/DNA interactions might be involved in unexpected drug genotoxicity, we evaluated, using both models where possible, 56 marketed pharmaceuticals, 40 of which were reported as being clastogenic in in vitro cytogenetics assays (chromosome aberrations/mouse lymphoma assay). As seen before, the two approaches showed good concordance (62%) and 26 of the 40 (65%) drugs exhibiting in vitro clastogenicity were predicted as intercalators by one or both methods. This finding provides support for the hypothesis that non-covalent DNA interaction may be a common mechanism of clastogenicity for many drugs having no obvious structural alerts for covalent DNA interaction.  相似文献   

2.
Many amyloid inhibitors resemble molecules that form chemical aggregates, which are known to inhibit many proteins. Eight known chemical aggregators inhibited amyloid formation of the yeast and mouse prion proteins Sup35 and recMoPrP in a manner characteristic of colloidal inhibition. Similarly, three known anti-amyloid molecules inhibited beta-lactamase in a detergent-dependent manner, which suggests that they too form colloidal aggregates. The colloids localized to preformed fibers and prevented new fiber formation in electron micrographs. They also blocked infection of yeast cells with Sup35 prions, which suggests that colloidal inhibition may be relevant in more biological milieus.  相似文献   

3.
Few scientific achievements have received such irresistible attention from scientists, clinicians, and the general public as the ability of human embryonic stem (hES) cells to differentiate into functional cell types for regenerative medicine. The most immediate benefit of neurons, cardiomyocytes, and insulin-secreting cells derived from hES cells, however, may reside in their application in drug discovery and toxicology. The availability of renewable human cells with functional similarities to their in vivo counterparts is the first landmark for a new generation of cell-based assays. The development of cell-based assays using human cells that are physiological targets of drug activity will increase the robustness of target validation and efficacy, high-throughput screening (HTS), structure-activity relationship (SAR), and should introduce safer drugs into clinical trials and the marketplace. The pluripotency of embryonic stem cells, that is, the capacity to generate multiple cell types, is a novel path for the discovery of 'regenerative drugs', the pursuit of small molecules that promote tissue repair (neurogenesis, cardiogenesis) or proliferation of resident stem cells in different organs, thus creating drugs that work by a novel mechanism.  相似文献   

4.
Small molecules that bind to DNA are extremely useful as biochemical tools for the visualization of DNA both in vitro and inside the cell. Additionally, the clinical significance of DNA-binding compounds can hardly be overstated, as many anticancer regimens include a compound that binds to and/or modifies DNA. Although many of the important DNA-binding anticancer drugs were discovered in phenotypic, cell-based screens, in vitro experiments have been developed that enable a precise determination of how a compound interacts with DNA. This review provides a summary of the assays that should be performed when it is suspected that DNA may be a target for a given small molecule. A battery of in vitro assays readily distinguishes between DNA intercalation, DNA groove binding, and the inhibition of topoisomerases. Further cell-based investigations can implicate a direct effect of a compound on DNA within the cell. Together, these assays are powerful tools to determine the mechanism of previously discovered molecules, and will be crucial to the discovery of the next generation of DNA-binding anticancer drugs.  相似文献   

5.
Small molecules have been identified as potential therapeutic agents for lysosomal storage diseases (LSDs), inherited metabolic disorders caused by defects in proteins that result in lysosome dysfunctional. Some small molecules function assisting the folding of mutant misfolded lysosomal enzymes that are otherwise degraded in ER-associated degradation. The ultimate result is the enhancement of the residual enzymatic activity of the deficient enzyme. Most of the high throughput screening (HTS) assays developed to identify these molecules are single-target biochemical assays. Here we describe a cell-based assay using patient cell lines to identify small molecules that enhance the residual arylsulfatase A (ASA) activity found in patients with metachromatic leukodystrophy (MLD), a progressive neurodegenerative LSD. In order to generate sufficient cell lines for a large scale HTS, primary cultured fibroblasts from MLD patients were transformed using SV40 large T antigen. These SV40 transformed (SV40t) cells showed to conserve biochemical characteristics of the primary cells. Using a specific colorimetric substrate para-nitrocatechol sulfate (pNCS), detectable ASA residual activity were observed in primary and SV40t fibroblasts from a MLD patient (ASA-I179S) cultured in multi-well plates. A robust fluorescence ASA assay was developed in high-density 1,536-well plates using the traditional colorimetric pNCS substrate, whose product (pNC) acts as "plate fluorescence quencher" in white solid-bottom plates. The quantitative cell-based HTS assay for ASA generated strong statistical parameters when tested against a diverse small molecule collection. This cell-based assay approach can be used for several other LSDs and genetic disorders, especially those that rely on colorimetric substrates which traditionally present low sensitivity for assay-miniaturization. In addition, the quantitative cell-based HTS assay here developed using patient cells creates an opportunity to identify therapeutic small molecules in a disease-cellular environment where potentially disrupted pathways are exposed and available as targets.  相似文献   

6.
Urine is a highly saturated solution due to the presence of certain colloids. The protective action of urinary colloids is of major importance in preventing precipitation, agglomeration and conglomeration of crystalloids from a super-saturated solution.If the concentration of such protective colloids is insufficient, stone formation begins or is accelerated. In 680 human subjects, the incidence of stone was found to be almost inversely proportional to the degree of protective urinary colloids present. Urine specimens were subjected to ultramicroscopic examination, determination of electric charge carried by the colloidal particles, determination of the surface tension, and photo-ultramicrographic studies.Subcutaneous injection of hyaluronidase mixed with physiologic saline solution greatly increases the content of protective colloids in the urine. The colloids are caused to set up to a gel, thereby preventing electrolytes present from crystallizing. They act as excellent dispersing agents and prevent the formation of stone.Hyaluronidase therapy, using 150 turbidity reducing units every 24 to 72 hours, was effective in preventing calculous formation or reformation during a period of 11 to 14 months in 18 of 20 patients in whom, previously, stones formed rapidly. In a second series of ten patients in whom stones formed rapidly, larger doses of hyaluronidase, averaging 300 turbidity reducing units every 24 to 48 hours, were given. The period of observation at the time of report was from six to ten months. In this group, there was no new stone formation or enlargement of existing stones as evidenced by x-ray studies at 30- to 60-day intervals.  相似文献   

7.
In this study we have prepared various phosphatidyl choline based colloidal systems, namely liposomes, transfersomes, microemulsions and micelles, using similar excipients and compared their ability to deliver drugs into and through the skin under occlusive and non-occlusive conditions. Hydrophilic propranolol hydrochloride (PHCl) and lipophilic propranolol base (PB) were used as model drugs. All tested parameters, that is formulation composition, drug characteristics and testing conditions, influenced skin permeability and skin retention. A trend was observed showing that the skin permeation as well as skin retention decreases with the amount of phosphatidyl choline in the formulations for both tested model drugs (micelles > transfersomes > liposomes > microemulsion). The lipophilic model drug had higher skin permeability especially when incorporated into the systems containing mainly hydrophilic excipients. Skin retention, however, was not affected by the drug hydrophilicity to the same extent as skin permeability. Occlusion increased both skin retention and skin permeation for both model drugs.  相似文献   

8.
Xu S  Wu D  Arnsdorf M  Johnson R  Getz GS  Cabana VG 《Biochemistry》2005,44(14):5381-5389
Fiber formation from murine serum amyloid A1 (SAA) was compared to the linear aggregation and fiber formation of colloidal gold particles. Here we report the similarities of these processes. Upon incubation with acetic acid, SAA misfolds and adopts a new conformation, which we termed saa. saa apparently is less soluble than SAA in aqueous solution; it aggregates and forms nucleation units and then fibers. The fibers appear as a string of the nucleation units. Additionally, an external electric field promotes saa fiber formation. These properties of saa are reminiscent of colloidal gold formation from gold ions and one-dimensional aggregation of the gold colloids. Colloidal gold particles were also found to be capable of aggregating one-dimensionally under an electric field or in the presence of polylysine. These gold fibers resembled in structure that of saa fibers. In summary, protein aggregation and formation of fibers appear to follow the generalized principles derived in colloidal science for the aggregation of atoms and molecules, including polymers such as polypeptides. The analysis of colloidal gold formation and of one-dimensional aggregation provides a simple model system for the elucidation of some aspects of protein fiber formation.  相似文献   

9.

Background

6-Aminophenanthridine (6AP) and Guanabenz (GA, a drug currently in use for the treatment of hypertension) were isolated as antiprion drugs using a yeast-based assay. These structurally unrelated molecules are also active against mammalian prion in several cell-based assays and in vivo in a mouse model for prion-based diseases.

Methodology/Principal Findings

Here we report the identification of cellular targets of these drugs. Using affinity chromatography matrices for both drugs, we demonstrate an RNA-dependent interaction of 6AP and GA with the ribosome. These specific interactions have no effect on the peptidyl transferase activity of the ribosome or on global translation. In contrast, 6AP and GA specifically inhibit the ribosomal RNA-mediated protein folding activity of the ribosome.

Conclusion/Significance

6AP and GA are therefore the first compounds to selectively inhibit the protein folding activity of the ribosome. They thus constitute precious tools to study the yet largely unexplored biological role of this protein folding activity.  相似文献   

10.

Background

Polo-like kinase-1 (Plk1) plays a crucial role in cell proliferation and the inhibition of Plk1 has been considered as a potential target for specific inhibitory drugs in anti-cancer therapy. Several research groups have identified peptide-based inhibitors that target the polo-box domain (PBD) of Plk1 and bind to the protein with high affinity in in vitro assays. However, inadequate proteolytic resistance and cell permeability of the peptides hinder the development of these peptide-based inhibitors into novel therapeutic compounds.

Methodology/Principal Findings

In order to overcome the shortcomings of peptide-based inhibitors, we designed and synthesized small molecule inhibitors. Among these molecules, bg-34 exhibited a high binding affinity for Plk1-PBD and it could cross the cell membrane in its unmodified form. Furthermore, bg-34-dependent inhibition of Plk1-PBD was sufficient for inducing apoptosis in HeLa cells. Moreover, modeling studies performed on Plk1-PBD in complex with bg-34 revealed that bg-34 can interact effectively with Plk1-PBD.

Conclusion/Significance

We demonstrated that the molecule bg-34 is a potential drug candidate that exhibits anti-Plk1-PBD activity and possesses the favorable characteristics of high cell permeability and stability. We also determined that bg-34 induced apoptotic cell death by inhibiting Plk1-PBD in HeLa cells at the same concentration as PEGylated 4j peptide, which can inhibit Plk1-PBD activity 1000 times more effectively than bg-34 can in in vitro assays. This study may help to design and develop drug-like small molecule as Plk1-PBD inhibitor for better therapeutic activity.  相似文献   

11.
In vitro cell-based assays are widely used during the drug discovery and development process to test the biological activity of new drugs. Most of the commonly used cell-based assays, however, lack the ability to measure in real-time or under dynamic conditions (e.g. constant flow). In this study a multi-parameter surface plasmon resonance approach in combination with living cell sensing has been utilized for monitoring drug-cell interactions in real-time, under constant flow and without labels. The multi-parameter surface plasmon resonance approach, i.e. surface plasmon resonance angle versus intensity plots, provided fully specific signal patterns for various cell behaviors when stimulating cells with drugs that use para- and transcellular absorption routes. Simulated full surface plasmon resonance angular spectra of cell monolayers were compared with actual surface plasmon resonance measurements performed with MDCKII cell monolayers in order to better understand the origin of the surface plasmon resonance signal responses during drug stimulation of cells. The comparison of the simulated and measured surface plasmon resonance responses allowed to better understand and provide plausible explanations for the type of cellular changes, e.g. morphological or mass redistribution in cells, that were induced in the MDCKII cell monolayers during drug stimulation, and consequently to differentiate between the type and modes of drug actions. The multi-parameter surface plasmon resonance approach presented in this study lays the foundation for developing new types of cell-based tools for life science research, which should contribute to an improved mechanistic understanding of the type and contribution of different drug transport routes on drug absorption.  相似文献   

12.
Immunolabeling efficiency of protein A-gold complexes   总被引:4,自引:0,他引:4  
A systematic study of the adsorption of protein A on colloidal gold particles varying in size from 5-16 nm was performed at different protein concentrations. The number of protein A molecules bound per colloidal particle was evaluated and the Scatchard analysis of the adsorption parameters was applied for each size of the colloid. The binding of protein A to the colloidal gold surface exhibited the same affinity pattern for all of the particle sizes. At low concentrations of stabilizing protein, adsorption took place with high affinity (Kd 1.96-3.3 nM) and the maximum number of protein A molecules attached with this affinity correlated well with the surface of the particle. At higher concentrations of protein A, adsorption exhibited a significantly lower affinity (Kd 530-800 nM), and no saturation was recorded. Competition by albumin did not reveal a preferential removal of the "low-affinity" bound protein A molecules, contradicting the model of successive shells of stabilizing protein around the colloidal particle. The immunolabeling efficiency of conjugates having the same size of gold nucleus but carrying different numbers of protein A molecules was comparatively investigated by quantitative post-embedding immunocytochemistry. Protein A-gold formed with 5-10-nm colloids gave the highest intensity of labeling when carrying the maximum number of protein A molecules that could be adsorbed with high affinity. Overloading as well as underloading these complexes resulted in a significant decrease of their immunoreactivity. The most efficient conjugates were obtained when stabilization was performed with 6 micrograms protein A/ml gold sol of 5 and 10 nm particle diameter, and 15 micrograms protein/ml of 15-nm colloid.  相似文献   

13.
Cytotoxic effects and topoisomerase II-mediated DNA breaks induced in vitro by ellipticine derivatives were examined in connection with 1H NMR and circular dichroism (CD) studies on molecular structures and interactions of drugs with DNA. The compounds included four 9-hydroxyellipticine and two 7-hydroxyisoellipticine derivatives. Structure-activity relationships indicated that a change in nitrogen atom position in the pyridinic ring greatly affected drug effects both on topoisomerase II action and cytotoxicity to L1210 cells. The four 9-hydroxyellipticine derivatives yielded bell-shaped curves in in vitro topoisomerase II-mediated DNA break assays, whereas the two 7-hydroxyisoellipticine derivatives demonstrated an almost linear increase at the same concentration (0-10 microM). In both cases, the intensity of cleavage was modulated by the position and the degree of methylation on the pyridinic ring, and results were correlated with cytotoxic activity expressed as the in vitro ID50 values for L1210 leukemia cells. 1H NMR experiments performed on free drug molecules in solution revealed that the two protons (alpha and beta) contiguous to the biologically important hydroxy group were sensitive to changes in electron distribution produced by the distant chemical modifications and methylations of the pyridinic ring. A linear relationship was observed between the differences in chemical shifts of alpha and beta protons (delta delta alpha-beta) versus ID50 values. CD experiments indicated that, at weak ionic strength I = 0.02 and at pH 7, drugs interact with the poly[d(A-T)] duplex according to a "three-mode binding model" which is governed by the drug structure and the drug to DNA ratio. The intercalation mode was related to the induction of topoisomerase II-mediated DNA cleavage, while the external binding mode consecutive to intercalation was related to cleavage suppression. These two modes concerned the good intercalators 9-hydroxyellipticines. The third was found for the weak intercalators 7-hydroxyisoellipticines and was characterized by self-stacked molecules bound "outside" DNA, presumably in the minor groove. Ligands either could be intercalated partially or linked at the edge of bases with a small number of molecules filling intercalation sites, for the second alternative. In addition to having different binding modes, 9-hydroxyellipticines were better inducers of DNA distortions than 7-hydroxyisoellipticines. The incidence of the drug binding modes on DNA-topoisomerase II recognition was discussed in connection with the in vitro cytotoxic activity exhibited by the drugs.  相似文献   

14.
Vaginal administration is a promising alternative to the per-oral route in achieving systemic or local therapeutic effects, when intestinal drug absorption is hindered by problematic biopharmaceutical drug properties. The aim of this study was to establish an in vitro vaginal model and use it to characterize biopharmaceutical properties of liposomally associated curcumin destined for vaginal delivery. The in vitro permeability, metabolism, and tissue retention of high/low permeable compounds were assessed on cow vaginal mucosa and compared to the permeabilities determined through Caco-2 cells and rat jejunum in vitro. The results showed that the intestinal mucosa was superior to the vaginal one in categorizing drugs based on their permeabilities in high/low permeable classes. Passive diffusion was found to be the main mechanism of drug penetration through vaginal mucosa and it was not affected by transporter–enzyme alliance, as their expression/activity was significantly reduced compared to the intestinal tract. Curcumin permeability from the solution form was the lowest of all tested substances due to its significant tissue retention and curcumin–mucus interactions. The permeability of liposomally associated curcumin was even lower but the binding of liposomally associated curcumin to the vaginal tissue was significantly higher. The permeability and tissue retention of liposomal curcumin were vesicle size dependent. Vaginal application of liposomally associated curcumin provides relatively high levels of curcumin in vaginal tissue, with limited systemic absorption.KEY WORDS: curcumin, intestinal models, liposomes, permeability, vaginal mucosa  相似文献   

15.
Lipopolysaccharides (LPS), otherwise termed ‘endotoxins’, are outer-membrane constituents of Gram-negative bacteria, and play a key role in the pathogenesis of ‘Septic Shock’, a major cause of mortality in the critically ill patient. We had previously defined the pharmacophore necessary for small molecules to specifically bind and neutralize this complex carbohydrate. A series of aryl and aliphatic spermine-sulfonamide analogs were synthesized and tested in a series of binding and cell-based assays in order to probe the effect of lipophilicity on sequestration ability. A strong correlation was indeed found, supporting the hypothesis that endotoxin-neutralizing ability involves a lipophilic or membrane attachment event. The research discussed herein may be useful for the design of additional carbohydrate recognizing molecules and endotoxin-neutralizing drugs.  相似文献   

16.
Shukla S  Rai V  Saini P  Banerjee D  Menon AK  Prasad R 《Biochemistry》2007,46(43):12081-12090
Candida albicans drug resistance protein 1 (Cdr1p), an ATP-dependent drug efflux pump, contributes to multidrug resistance in Candida-infected immunocompromised patients. Previous cell-based assays suggested that Cdr1p also acts as a phospholipid translocator. To investigate this, we reconstituted purified Cdr1p into sealed membrane vesicles. Comparison of the ATPase activities of sealed and permeabilized proteoliposomes indicated that Cdr1p was asymmetrically reconstituted such that approximately 70% of the molecules had their ATP binding sites accessible to the extravesicular space. Fluorescent glycerophospholipids were incorporated into the outer leaflet of the proteoliposomes, and their transport into the inner leaflet was tracked with a quenching assay using membrane-impermeant dithionite. We observed ATP-dependent transport of the fluorescent lipids into the inner leaflet of the vesicles. With approximately 6 molecules of Cdr1p per vesicle on average, the half-time to reach the maximal extent of transport was approximately 15 min. Transport was reduced in vesicles reconstituted with Cdr1p variants with impaired ATPase activity and could be competed out to different levels by a molar excess of drugs such as fluconazole and miconazole that are known to be effluxed by Cdr1p. Transport was not affected by ampicillin, a compound that is not effluxed by Cdr1p. Our results suggest a direct link between the ability of Cdr1p to translocate fluorescent phospholipids and efflux drugs. We note that only a few members of the ABC superfamily of Candida have a well-defined role as drug exporters; thus, lipid translocation mediated by Cdr1p could reflect its cellular function.  相似文献   

17.
Colloidal Probe Nanoscopy (CPN), the study of the nano-scale interactive forces between a specifically prepared colloidal probe and any chosen substrate using the Atomic Force Microscope (AFM), can provide key insights into physical interactions present within colloidal systems. Colloidal systems are widely existent in several applications including, pharmaceuticals, foods, paints, paper, soil and minerals, detergents, printing and much more.1-3 Furthermore, colloids can exist in many states such as emulsions, foams and suspensions. Using colloidal probe nanoscopy one can obtain key information on the adhesive properties, binding energies and even gain insight into the physical stability and coagulation kinetics of the colloids present within. Additionally, colloidal probe nanoscopy can be used with biological cells to aid in drug discovery and formulation development. In this paper we describe a method for conducting colloidal probe nanoscopy, discuss key factors that are important to consider during the measurement, and show that both quantitative and qualitative data that can be obtained from such measurements.  相似文献   

18.
Urine is a highly saturated solution due to the presence of certain colloids. The protective action of urinary colloids is of major importance in preventing precipitation, agglomeration and conglomeration of crystalloids from a super-saturated solution. If the concentration of such protective colloids is insufficient, stone formation begins or is accelerated. In 680 human subjects, the incidence of stone was found to be almost inversely proportional to the degree of protective urinary colloids present. Urine specimens were subjected to ultramicroscopic examination, determination of electric charge carried by the colloidal particles, determination of the surface tension, and photo-ultramicrographic studies. Subcutaneous injection of hyaluronidase mixed with physiologic saline solution greatly increases the content of protective colloids in the urine. The colloids are caused to set up to a gel, thereby preventing electrolytes present from crystallizing. They act as excellent dispersing agents and prevent the formation of stone. Hyaluronidase therapy, using 150 turbidity reducing units every 24 to 72 hours, was effective in preventing calculous formation or reformation during a period of 11 to 14 months in 18 of 20 patients in whom, previously, stones formed rapidly. In a second series of ten patients in whom stones formed rapidly, larger doses of hyaluronidase, averaging 300 turbidity reducing units every 24 to 48 hours, were given. The period of observation at the time of report was from six to ten months. In this group, there was no new stone formation or enlargement of existing stones as evidenced by x-ray studies at 30- to 60-day intervals.  相似文献   

19.
At the 2011 Yale Chemical Biology Symposium, Jason Gestwicki presented a novel yet intuitive approach to drug screening. This method, which he termed "gray box" screening, targets protein complexes that have been reconstituted in vitro. Therefore, the gray box screen can achieve greater phenotypic complexity than biochemical assays but avoids the need for target identification that follows cell-based assays. Dr. Gestwicki's research group was able to use the gray box screen to identify myricetin as an inhibitor of the DnaK-DnaJ chaperone complex. This review will discuss Dr. Gestwicki's approach to identifying DnaK-DnaJ inhibitors as well as where the gray box screen fits among traditional techniques in drug discovery.  相似文献   

20.
Over the past few years, establishment and adaptation of cell-based assays for drug development and testing has become an important topic in high-throughput screening (HTS). Most new assays are designed to rapidly detect specific cellular effects reflecting action at various targets. However, although more complex than cell-free biochemical test systems, HTS assays using monolayer or suspension cultures still reflect a highly artificial cellular environment and may thus have limited predictive value for the clinical efficacy of a compound. Today's strategies for drug discovery and development, be they hypothesis free or mechanism based, require facile, HTS-amenable test systems that mimic the human tissue environment with increasing accuracy in order to optimize preclinical and preanimal selection of the most active molecules from a large pool of potential effectors, for example, against solid tumors. Indeed, it is recognized that 3-dimensional cell culture systems better reflect the in vivo behavior of most cell types. However, these 3-D test systems have not yet been incorporated into mainstream drug development operations. This article addresses the relevance and potential of 3-D in vitro systems for drug development, with a focus on screening for novel antitumor drugs. Examples of 3-D cell models used in cancer research are given, and the advantages and limitations of these systems of intermediate complexity are discussed in comparison with both 2-D culture and in vivo models. The most commonly used 3-D cell culture systems, multicellular spheroids, are emphasized due to their advantages and potential for rapid development as HTS systems. Thus, multicellular tumor spheroids are an ideal basis for the next step in creating HTS assays, which are predictive of in vivo antitumor efficacy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号