首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Metal-ion and sequence dependent changes in the stacking interactions of bases surrounding abasic (AB) sites in 10 different DNA duplexes were examined by incorporating the fluorescent nucleotide probe 2-aminopurine (2-AP), opposite to the site (AB-APopp) or adjacent to the site (AB-APadj) on either strand. A detailed study of the fluorescence emission and excitation spectra of these AB duplexes and their corresponding parent duplexes indicates that AB-APoppis significantly less stacked than 2-AP in the corresponding normal duplex. In general, AB-APadjon the AB strand is stacked, but AB-APadjon the opposite strand shows destabilized stacking interactions. The results also indicate that divalent cation binding to the AB duplexes contributes to destabilizaton of the base stacking interactions of AB-APopp, but has little or no effect on the stacking interactions of AB-APadj. Consistent with these results, the fluorescence of AB-APoppis 18-30-fold more sensitive to an externally added quenching agent than the parent normal duplex. When uracil DNA glycosylase binds to AB-APoppin the presence of 2.5 mM MgCl2, a 3-fold decrease in fluorescence is observed ( K d = 400 +/- 90 nM) indicating that the unstacked 2-APoppbecomes more stacked upon binding. On the basis of these fluorescence studies a model for the local base stacking interactions at these AB sites is proposed.  相似文献   

2.
A number of endogenous and exogenous agents, and cellular processes create abasic (AP) sites in DNA. If unrepaired, AP sites cause mutations, strand breaks and cell death. Aldehyde-reactive agent methoxyamine reacts with AP sites and blocks their repair. Another alkoxyamine, ARP, tags AP sites with a biotin and is used to quantify these sites. We have combined both these abilities into one alkoxyamine, AA3, which reacts with AP sites with a better pH profile and reactivity than ARP. Additionally, AA3 contains an alkyne functionality for bioorthogonal click chemistry that can be used to link a wide variety of biochemical tags to AP sites. We used click chemistry to tag AP sites with biotin and a fluorescent molecule without the use of proteins or enzymes. AA3 has a better reactivity profile than ARP and gives much higher product yields at physiological pH than ARP. It is simpler to use than ARP and its use results in lower background and greater sensitivity for AP site detection. We also show that AA3 inhibits the first enzyme in the repair of abasic sites, APE-1, to about the same extent as methoxyamine. Furthermore, AA3 enhances the ability of an alkylating agent, methylmethane sulfonate, to kill human cells and is more effective in such combination chemotherapy than methoxyamine.  相似文献   

3.
Sung JS  Demple B 《The FEBS journal》2006,273(8):1620-1629
Base excision DNA repair (BER) is fundamentally important in handling diverse lesions produced as a result of the intrinsic instability of DNA or by various endogenous and exogenous reactive species. Defects in the BER process have been associated with cancer susceptibility and neurodegenerative disorders. BER funnels diverse base lesions into a common intermediate, apurinic/apyrimidinic (AP) sites. The repair of AP sites is initiated by the major human AP endonuclease, Ape1, or by AP lyase activities associated with some DNA glycosylases. Subsequent steps follow either of two distinct BER subpathways distinguished by repair DNA synthesis of either a single nucleotide (short-patch BER) or multiple nucleotides (long-patch BER). As the major repair mode for regular AP sites, the short-patch BER pathway removes the incised AP lesion, a 5'-deoxyribose-5-phosphate moiety, and replaces a single nucleotide using DNA polymerase (Polbeta). However, short-patch BER may have difficulty handling some types of lesions, as shown for the C1'-oxidized abasic residue, 2-deoxyribonolactone (dL). Recent work indicates that dL is processed efficiently by Ape1, but that short-patch BER is derailed by the formation of stable covalent crosslinks between Ape1-incised dL and Polbeta. The long-patch BER subpathway effectively removes dL and thereby prevents the formation of DNA-protein crosslinks. In coping with dL, the cellular choice of BER subpathway may either completely repair the lesion, or complicate the repair process by forming a protein-DNA crosslink.  相似文献   

4.
Repair of abasic sites in DNA   总被引:12,自引:0,他引:12  
Repair of both normal and reduced AP sites is activated by AP endonuclease, which recognizes and cleaves a phosphodiester bond 5' to the AP site. For a short period of time an incised AP site is occupied by poly(ADP-ribose) polymerase and then DNA polymerase beta adds one nucleotide into the repair gap and simultaneously removes the 5'-sugar phosphate. Finally, the DNA ligase III/XRCC1 complex accomplishes repair by sealing disrupted DNA ends. However, long-patch BER pathway, which is involved in the removal of reduced abasic sites, requires further DNA synthesis resulting in strand displacement and the generation of a damage-containing flap that is later removed by the flap endonuclease. Strand-displacement DNA synthesis is accomplished by DNA polymerase delta/epsilon and DNA ligase I restores DNA integrity. DNA synthesis by DNA polymerase delta/epsilon is dependent on proliferating cell nuclear antigen, which also stimulates the DNA ligase I and flap endonuclease. These repair events are supported by multiple protein-protein interactions.  相似文献   

5.
Reactive oxygen species produce a wide spectrum of DNA damage, including oxidative base damage and abasic (AP) sites. Many procedures are available for the quantification and detection of base damage and AP sites. However, either these procedures are laborious or the starting materials are difficult to obtain. A biotinylated aldehyde-specific reagent, ARP, has been shown to react specifically with the aldehyde group present in AP sites, resulting in biotin-tagged AP sites in DNA. The biotin-tagged AP sites can then be determined colorimetrically with an ELISA-like assay, using avidin/biotin-conjugated horseradish peroxidase as the indicator enzyme. The ARP assay is thus a simple, rapid, and sensitive method for the detection of AP sites in DNA. Furthermore, removal of damaged base by DNA N-glycosylases generates AP sites that can be measured by the ARP reagent. By coupling the ARP assay with either endonuclease III from Escherichia coli or 8-oxoguanine N-glycosylase (OGG1) from yeast, investigators can rapidly determine the amount of oxidative pyrimidine damage (endonuclease III-sensitive sites) or purine damage (OGG1-sensitive sites) in cellular DNA, respectively. An increased level of oxidative damage has been implicated in several age-related human diseases such as Alzheimer's disease, amyotrophic lateral sclerosis, and Parkinson's disease, as well as the aging process. The sensitivity and simplicity of the ARP assay thus make it a valuable method for investigators who are interested in estimating the level of oxidative DNA damage in cells and tissues derived from patients with various age-related diseases or cancers.  相似文献   

6.
Three empirical potentials of the Lennard-Jones type taken from literature were used to calculate van der Waals contributions to the base-pair couples stacking energies in B-DNA and A-DNA type double helical conformations. The information obtained can be summarized as follows: (1) Purine-pyrimidine and purine-purine (pyrimidine-pyrimidine in the complementary strand) sequences preferred right-handed helical arrangement, whereas pyrimidine-purine sequences favoured left-handed (C-G) or unwound (T-A) stacking geometry; in the latter case this only held for B- but not A-DNA (the C-G sequence was not studied in A-DNA owing to difficulties (see below) with the G amino group in B-DNA); (2) Positive propeller twist of base-pairs was stable in both B- and A-DNA; the thymine methyl group promoted the propeller and this effect was strongest in the A-T step; (3) Tilt of base pairs occurred around zero in B-DNA and between 15-20 degrees C in A-DNA, in agreement with the experimental observations; (4) Vertical separation of base pairs was optimal within 0.33-0.34 nm for B-DNA and around 0.29 nm for A-DNA using the 9-6 potential. The 12-6 potential gave similar results with B-DNA as the 9-6 potential if, however, base pairs were separated by 0.35-0.36 nm; (5) The calculated effect of the guanine amino group was substantially stronger than expected on the basis of data derived from X-ray diffraction studies of oligonucleotide single crystals; (6) In comparison with the 9-6 potential, the 12-6 potential provided more strict energy minima. In summary, the empirical potentials reproduce, at least semiquantitatively, many but not all DNA properties; this should be taken into account whenever the potentials are used for prediction purposes.  相似文献   

7.
Anthraquinone and naphthalene diimide intercalators with amine-containing side chains cleave plasmid DNA at abasic sites (apurinic or apyrimidinic (AP) sites). The intercalator-amine is substantially more effective than the amine itself; many intercalators with diamine side chains cleave most of the abasic sites at micromolar concentration (30 min at 37 degrees C). Intercalators with two amino moieties in the side chain are more efficient than those with one, arguing for a role for each of two amines in the cleavage mechanism. Side chains ending in tertiary amines are somewhat more effective than those ending in primary amines, indicating that imine formation is not required for cleavage at the abasic site. We also report a systematic study of abasic site cleavage by polyamines, including piperidine, spermine, spermidine and 12 other di-, tri- and tetra-amines. For polyamines as well as intercalator-amines, examples with three carbon atoms between neighboring nitrogens atoms cleave most efficiently. This may reflect a particularly favorable geometry for proton abstraction for these species. The effect of nitrogen-nitrogen spacing on the pKa values of the nitrogens may contribute as well. Overall, cleavage of plasmid DNA at adventitious abasic sites by intercalator-amines bearing two nitrogens in a single side chain occurs readily.  相似文献   

8.
DNA ligase D (LigD) participates in a mutagenic pathway of nonhomologous end joining in bacteria. LigD consists of an ATP-dependent ligase domain fused to a polymerase domain (POL) and a phosphoesterase module. The POL domain performs templated and nontemplated primer extension reactions with either dNTP or rNTP substrates. Here we report that Pseudomonas LigD POL is an unfaithful nucleic acid polymerase. Although the degree of infidelity in nucleotide incorporation varies according to the mispair produced, we find that a correctly paired ribonucleotide is added to the DNA primer terminus more rapidly than the corresponding correct deoxyribonucleotide and incorrect nucleotides are added much more rapidly with rNTP substrates than with dNTPs, no matter what the mispair configuration. We find that 3' mispairs are extended by LigD POL, albeit more slowly than 3' paired primer-templates. The magnitude of the rate effect on mismatch extension varies with the identity of the 3' mispair, but it was generally the case that mispaired ends were extended more rapidly with rNTP substrates than with dNTPs. These results lend credence to the suggestion that LigD POL might fill in short 5'-overhangs with ribonucleotides when repairing double strand breaks in quiescent cells. We report that LigD POL can add a deoxynucleotide opposite an abasic lesion in the template strand, albeit slowly. Ribonucleotides are inserted more rapidly at an abasic lesion than are deoxys. LigD POL displays feeble activity in extending a preformed primer terminus opposing an abasic site, but can readily bypass the lesion by slippage of the primer 3' di- or trinucleotide and realignment to the template sequence distal to the abasic site. Covalent benzo[a]pyrene-dG and benzo[c]phenanthrene-dA adducts in the template strand are durable roadblocks to POL elongation. POL can slowly insert a dNMP opposite the adduct, but is impaired in the subsequent extension step.  相似文献   

9.
DNA glycosylase and glycosylase/abasic (AP) lyases are the enzymes responsible for initiating the base excision repair pathway by recognizing the damaged target base and catalyzing the breakage of the base-sugar glycosyl bond. The subset of glycosylases that have an associated AP lyase activity also catalyze DNA strand breakage at the resulting or preexisting AP site via a beta-elimination reaction, proceeding from an enzyme-DNA imino intermediate. Two distinct mechanisms have been proposed for the formation of this intermediate. These mechanisms essentially differ in the nature of the first bond broken and the timing of the opening of the deoxyribose ring. The data presented here demonstrate that the combined rate of sugar ring opening and reduction of the sugar is significantly slower than the rate of formation of a T4-pyrimidine dimer glycosylase (T4-pdg)-DNA intermediate. Using a methyl-deoxyribofuranose AP-site analogue that is incapable of undergoing sugar ring opening, it was demonstrated that the T4-pdg reaction can initiate at the ring-closed form, albeit at a drastically reduced rate. T4-pdg preferentially cleaved the beta-anomer of the methyl-deoxyribofuranose AP site analogue. This is consistent with a mechanism in which the methoxy group is backside-displaced by the amino group from the alpha-face of the deoxyribofuranose ring. In addition, studies examining rates of sugar-aldehyde reduction and the sodium borohydride concentration dependence of the rate of formation of the covalent imine intermediate suggest that the reduction of the intermediate is rate-limiting in the reaction.  相似文献   

10.
We report the synthesis and study of a photoreactive nitrobenzamide containing acridine that specifically interacts at abasic site in DNA by threading intercalation and introduces under irradiation a lesion on the opposite strand at the unpaired pyrimidine.  相似文献   

11.
Indolicidin is a host defense tridecapeptide that inhibits the catalytic activity of HIV-1 integrase in vitro. Here we have elucidated its mechanism of integrase inhibition. Using crosslinking and mass spectrometric footprinting approaches, we found that indolicidin interferes with formation of the catalytic integrase-DNA complex by directly binding DNA. Further characterization revealed that the peptide forms covalent links with abasic sites. Indolicidin crosslinks single- or double-stranded DNAs and various positions of the viral cDNA with comparable efficiency. Using truncated and chemically modified peptides, we show that abasic site crosslinking is independent of the PWWP motif but involves the indolicidin unique lysine residue and the N- and C- terminal NH2 groups. Because indolicidin can also inhibit topoisomerase I, we believe that multiple actions at the level of DNA might be a common property of antimicrobial peptides.  相似文献   

12.
Hot piperidine is often used to cleave abasic and UV-irradiated DNA at the sites of damage. It can inflict non-specific damage on DNA, probably because it is a strong base and creates significant concentrations of hydroxyl ions which can attack purines and pyrimidines. We show that several other amines can cleave abasic DNA at or near neutral pH without non-specific damage. One diamine, N,N'-dimethylethylenediamine, efficiently cleaves abasic DNA at pH 7.4 by either beta- or beta,delta-elimination, depending on temperature. Using end-labelled oligonucleotides we show that cleavage depends mainly on elimination reactions, but that 4',5'-cyclization is also significant. This reagent also cleaves at photoproducts induced by UVC and UVB, producing the same overall pattern as piperidine, but with no non-specific damage. It should prove valuable in locating low levels of photoproducts in DNA, such as those induced by natural sunlight.  相似文献   

13.
Origin of endogenous DNA abasic sites in Saccharomyces cerevisiae   总被引:1,自引:0,他引:1       下载免费PDF全文
Abasic (AP) sites are among the most frequent endogenous lesions in DNA and present a strong block to replication. In Saccharomyces cerevisiae, an apn1 apn2 rad1 triple mutant is inviable because of its incapacity to repair AP sites and related 3'-blocked single-strand breaks (M. Guillet and S. Boiteux, EMBO J. 21:2833, 2002). Here, we investigated the origin of endogenous AP sites in yeast. Our results show that the deletion of the UNG1 gene encoding the uracil DNA glycosylase suppresses the lethality of the apn1 apn2 rad1 mutant. In contrast, inactivation of the MAG1, OGG1, or NTG1 and NTG2 genes encoding DNA glycosylases involved in the repair of alkylation or oxidation damages does not suppress lethality. Although viable, the apn1 apn2 rad1 ung1 mutant presents growth delay due to a G(2)/M checkpoint. These results point to uracil as a critical source of the formation of endogenous AP sites in DNA. Uracil can arise in DNA by cytosine deamination or by the incorporation of dUMP during replication. Here, we show that the overexpression of the DUT1 gene encoding the dUTP pyrophosphatase (Dut1) suppresses the lethality of the apn1 apn2 rad1 mutant. Therefore, this result points to the dUTP pool as an important source of the formation of endogenous AP sites in eukaryotes.  相似文献   

14.
Apurinic/apyrimidinic (AP) sites, a prominent type of DNA damage, are repaired through the base excision repair mechanism in both prokaryotes and eukaryotes and may interfere with many other cellular processes. A full repertoire of AP site-binding proteins in cells is presently unknown, preventing reliable assessment of harm inflicted by these ubiquitous lesions and of their involvement in the flux of DNA metabolism. We present a proteomics-based strategy for assembling at least a partial catalogue of proteins capable of binding AP sites in DNA. The general scheme relies on the sensitivity of many AP site-bound protein species to NaBH(4) cross-linking. An affinity-tagged substrate is used to facilitate isolation of the cross-linked species, which are then separated and analyzed by mass spectrometry methods. We report identification of seven proteins from Escherichia coli (AroF, DnaK, MutM, PolA, TnaA, TufA, and UvrA) and two proteins from bakers' yeast (ARC1 and Ygl245wp) reactive for AP sites in this system.  相似文献   

15.
The DNA sequence specificity of the cancer chemotherapeutic agent, bleomycin, was determined with high precision in purified plasmid DNA using an improved technique. This improved technique involved the labelling of the 5′- and 3′-ends of DNA with different fluorescent tags, followed by simultaneous cleavage by bleomycin and capillary electrophoresis with laser-induced fluorescence. This permitted the determination of bleomycin cleavage specificity with high accuracy since end-label bias was greatly reduced. Bleomycin produces single- and double-strand breaks, abasic sites and other base damage in DNA. This high-precision method was utilised to elucidate, for the first time, the DNA sequence specificity of bleomycin-induced DNA damage at abasic sites. This was accomplished using endonuclease IV that cleaves DNA at abasic sites after bleomycin damage. It was found that bleomycin-induced abasic sites formed at 5′-GC and 5′-GT sites while bleomycin-induced phosphodiester strand breaks formed mainly at 5′-GT dinucleotides. Since bleomycin-induced abasic sites are produced in the absence of molecular oxygen, this difference in DNA sequence specificity could be important in hypoxic tumour cells.  相似文献   

16.
One of the most frequent lesions formed in cellular DNA are abasic (apurinic/apyrimidinic, AP) sites that are both cytotoxic and mutagenic, and must be removed efficiently to maintain genetic stability. It is generally believed that the repair of AP sites is initiated by the AP endonucleases; however, an alternative pathway seems to prevail in Schizosaccharomyces pombe. A mutant lacking the DNA glycosylase/AP lyase Nth1 is very sensitive to the alkylating agent methyl methanesulfonate (MMS), suggesting a role for Nth1 in base excision repair (BER) of alkylation damage. Here, we have further evaluated the role of Nth1 and the second putative S.pombe AP endonuclease Apn2, in abasic site repair. The deletion of the apn2 open reading frame dramatically increased the sensitivity of the yeast cells to MMS, also demonstrating that the Apn2 has an important function in the BER pathway. The deletion of nth1 in the apn2 mutant strain partially relieves the MMS sensitivity of the apn2 single mutant, indicating that the Apn2 and Nth1 act in the same pathway for the repair of abasic sites. Analysis of the AP site cleavage in whole cell extracts of wild-type and mutant strains showed that the AP lyase activity of Nth1 represents the major AP site incision activity in vitro. Assays with DNA substrates containing base lesions removed by monofunctional DNA glycosylases Udg and MutY showed that Nth1 will also cleave the abasic sites formed by these enzymes and thus act downstream of these enzymes in the BER pathway. We suggest that the main function of Apn2 in BER is to remove the resulting 3′-blocking termini following AP lyase cleavage by Nth1.  相似文献   

17.
DNA polymerases specifically insert the hydrophobic pyrene deoxynucleotide (P) opposite tetrahydrofuran (F), an stable abasic site analog, and DNA duplexes containing this non-hydrogen-bonded pair possess a high degree of thermodynamic stability. These observations support the hypothesis that steric complementarity and stacking interactions may be sufficient for maintaining stability of DNA structure and specificity of DNA replication, even in the absence of hydrogen bonds across the base pair. Here we report the NMR characterization and structure determination of two DNA molecules containing pyrene residues. The first is a 13mer duplex with a pyrene·tetrahydrofuran pair (P·F pair) at the ninth position and the second mimics a replication intermediate right after incorporation of a pyrene nucleoside opposite an abasic site. Our data indicate that both molecules adopt right-handed helical conformations with Watson– Crick alignments for all canonical base pairs. The pyrene ring stays inside the helix close to its baseless partner in both molecules. The single-stranded region of the replication intermediate folds back over the opposing strand, sheltering the hydrophobic pyrene moiety from water exposure. The results support the idea that the stability and replication of a P·F pair is due to its ability to mimic Watson–Crick structure.  相似文献   

18.
The chaperonin GroEL consists of a double ring structure made of identical subunits that display different modes of allosteric communication. The protein folding cycle requires the simultaneous positive intra-ring and negative inter-ring cooperativities of ATP binding. This ensures GroES binding to one ring and release of the ligands from the opposite one. To better characterize inter-ring allosterism, the thermal stability as well as the temperature dependence of the functional and conformational properties of wild type GroEL, a single ring mutant (SR1) and two single point mutants suppressing one interring salt bridge (E434K and E461K) were studied. The results indicate that ionic interactions at the two interring contact sites are essential to maintain the negative cooperativity for protein substrate binding and to set the protein thermostat at 39 degrees C. These electrostatic interactions contribute distinctly to the stability of the inter-ring interface and the overall protein stability, e.g. the E434K thermal inactivation curve is shifted to lower temperatures, and its unfolding temperature and activation energy are also lowered. An analysis of the ionic interactions at the inter-ring contact sites reveals that at the so called "left site" a network of electrostatic interactions involving three charged residues might be established, in contrast to what is found at the "right site" where only two oppositely charged residues interact. Our data suggest that electrostatic interactions stabilize protein-protein interfaces depending on both the number of ionic interactions and the number of residues engaged in each of these interactions. In the case of GroEL, this combination sets the thermostat of the protein so that the chaperonin distinguishes physiological from stress temperatures.  相似文献   

19.
Zhao B  Xie Z  Shen H  Wang Z 《Nucleic acids research》2004,32(13):3984-3994
Abasic (AP) sites are major DNA lesions and are highly mutagenic. AP site-induced mutagenesis largely depends on translesion synthesis. We have examined the role of DNA polymerase η (Polη) in translesion synthesis of AP sites by replicating a plasmid containing a site-specific AP site in yeast cells. In wild-type cells, AP site bypass resulted in preferred C insertion (62%) over A insertion (21%), as well as −1 deletion (3%), and complex event (14%) containing multiple mutations. In cells lacking Polη (rad30), Rev1, Polζ (rev3), and both Polη and Polζ, translesion synthesis was reduced to 30%, 30%, 15% and 3% of the wild-type level, respectively. C insertion opposite the AP site was reduced in rad30 mutant cells and was abolished in cells lacking Rev1 or Polζ, but significant A insertion was still detected in these mutant cells. While purified yeast Polα effectively inserted an A opposite the AP site in vitro, purified yeast Polδ was much less effective in A insertion opposite the lesion due to its 3′→5′ proofreading exonuclease activity. Purified yeast Polη performed extension synthesis from the primer 3′ A opposite the lesion. These results show that Polη is involved in translesion synthesis of AP sites in yeast cells, and suggest that an important role of Polη is to catalyze extension following A insertion opposite the lesion. Consistent with these conclusions, rad30 mutant cells were sensitive to methyl methanesulfonate (MMS), and rev1 rad30 or rev3 rad30 double mutant cells were synergistically more sensitive to MMS than the respective single mutant strains.  相似文献   

20.
Endonuclease IV is the archetype for a conserved apurinic/apyrimidinic (AP) endonuclease family that primes DNA repair synthesis by cleaving the DNA backbone 5' of AP sites. The crystal structures of Endonuclease IV and its AP-DNA complex at 1.02 and 1.55 A resolution reveal how an alpha8beta8 TIM barrel fold can bind dsDNA. Enzyme loops intercalate side chains at the abasic site, compress the DNA backbone, bend the DNA approximately 90 degrees, and promote double-nucleotide flipping to sequester the extrahelical AP site in an enzyme pocket that excludes undamaged nucleotides. These structures suggest three Zn2+ ions directly participate in phosphodiester bond cleavage and prompt hypotheses that double-nucleotide flipping and sharp bending by AP endonucleases provide exquisite damage specificity while aiding subsequent base excision repair pathway progression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号