首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
The responses to odor stimulation of 40 single units in the olfactory mucosa and of 18 units in the olfactory bulb of the tortoise (Gopherus polyphemus) were recorded with indium-filled, Pt-black-tipped microelectrodes. The test battery consisted of 27 odorants which were proved effective by recording from small bundles of olfactory nerve. Two concentrations of each odorant were employed. These values were adjusted for response magnitudes equal to those for amyl acetate at –2.5 and –3.5 log concentration in olfactory twig recording. Varying concentrations were generated by an injection-type olfactometer. The mucosal responses were exclusively facilitory with a peak frequency of 16 impulses/sec. 19 mucosal units responded to at least one odorant and each unit was sensitive to a limited number of odorants (1–15). The sensitivity pattern of each unit was highly individual, with no clear-cut types, either chemical or qualitative, emerging. Of the 18 olfactory bulb units sampled, all responded to at least one odorant. The maximum frequency observed during a response was 39 impulses/sec. The bulbar neurons can be classified into two types. There are neurons that respond exclusively with facilitation and others that respond with facilitation to some odorants and with inhibition to others. Qualitatively or chemically similar odorants did not generate similar patterns across bulbar units.  相似文献   

3.
Considerable evidence exists for an extrinsic cholinergic influence in the maturation and function of the main olfactory bulb. In this study, we addressed the muscarinic modulation of dopaminergic neurons in this structure. We used different patch-clamp techniques to characterize the diverse roles of muscarinic agonists on identified dopaminergic neurons in a transgenic animal model expressing a reporter protein (green fluorescent protein) under the tyrosine hydroxylase promoter. Bath application of acetylcholine (1 mM) in slices and in enzymatically dissociated cells reduced the spontaneous firing of dopaminergic neurons recorded in cell-attached mode. In whole-cell configuration no effect of the agonist was observed, unless using the perforated patch technique, thus suggesting the involvement of a diffusible second messenger. The effect was mediated by metabotropic receptors as it was blocked by atropine and mimicked by the m2 agonist oxotremorine (10 muM). The reduction of periglomerular cell firing by muscarinic activation results from a membrane-potential hyperpolarization caused by activation of a potassium conductance. This modulation of dopaminergic interneurons may be important in the processing of sensory information and may be relevant to understand the mechanisms underlying the olfactory dysfunctions occurring in neurodegenerative diseases affecting the dopaminergic and/or cholinergic systems.  相似文献   

4.
Summary We have studied the distribution of calbindin D-28k immunoreactivity in the rat olfactory bulb using specific monoclonal antibodies and the avidin-biotin-immunoperoxidase method. The largest number of positive neurons was located in the periglomerular layer. These neurons were identified as periglomerular cells; they have been described also by other authors as calbindin-positive elements. Close to these neurons, a second population of nerve cells was identified as superficial shortaxon neurons. The remaining layers showed a smaller number of stained elements. Other labeled neurons were located along the external border of the external plexiform layer; the scarce neurons marking its internal border were identified as van Gehuchten cells. No immunoreactive structures were found in the mitral cell layer, although we observed another population of immunostained short-axon cells at its internal border. Some reactive structures, identified by us as horizontal and vertical cells of Cajal, were located in the boundary zone between the internal plexiform layer and the granule layer. In the white matter, we found a neuronal type characterized by its large size and oriented arborization of varicose dendrites.  相似文献   

5.
Local neurons play key roles in the mammalian olfactory bulb   总被引:1,自引:0,他引:1  
Over the past few decades, research exploring how the brain perceives, discriminates, and recognizes odorant molecules has received a growing interest. Today, olfaction is no longer considered a matter of poetry. Chemical senses entered the biological era when an increasing number of scientists started to elucidate the early stages of the olfactory pathway. A combination of genetic, biochemical, cellular, electrophysiological and behavioral methods has provided a picture of how odor information is processed in the olfactory system as it moves from the periphery to higher areas of the brain. Our group is exploring the physiology of the main olfactory bulb, the first processing relay in the mammalian brain. From different electrophysiological approaches, we are attempting to understand the cellular rules that contribute to the synaptic transmission and plasticity at this central relay. How olfactory sensory inputs, originating from the olfactory epithelium located in the nasal cavity, are encoded in the main olfactory bulb remains a crucial question for understanding odor processing. More importantly, the persistence of a high level of neurogenesis continuously supplying the adult olfactory bulb with newborn local neurons provides an attractive model to investigate how basic olfactory functions are maintained when a large proportion of local neurons are continuously renewed. For this purpose, we summarize the current ideas concerning the molecular mechanisms and organizational strategies used by the olfactory system to encode and process information in the main olfactory bulb. We discuss the degree of sensitivity of the bulbar neuronal network activity to the persistence of this high level of neurogenesis that is modulated by sensory experience. Finally, it is worth mentioning that analyzing the molecular mechanisms and organizational strategies used by the olfactory system to transduce, encode, and process odorant information in the olfactory bulb should aid in understanding the general neural mechanisms involved in both sensory perception and memory. Due to space constraints, this review focuses exclusively on the olfactory systems of vertebrates and primarily those of mammals.  相似文献   

6.
It was shown by intracellular recording of the activity of olfactory bulb neurons of the carp that their dendrites are excited both by synaptic activation and by direct stimulation with an electric current. The dendrites generate an action potential and probably conduct it for some distance toward the soma. The neurons can be divided into two groups: one responds to ortho- and antidromic stimuli with one, rarely with two peaks, the other responds with a rhythmical discharge. The presence of early and late IPSP is characteristic of neurons of both groups. Rhythmical variations in potential with a frequency of 26–33/sec, so-called oscillations, are recorded; they may be excitatory (in secondary neurons they correspond to EPSP) or inhibitory (they correspond to IPSP). Possible mechanisms of the excitatory oscillations and the rhythmical discharge in olfactory bulb neurons of the carp are discussed.M. V. Lomonosov Moscow State University. Translated from Neirofiziologiya, Vol.3, No.5, pp. 505–511, September–October, 1971.  相似文献   

7.
Response correlation maps of neurons in the mammalian olfactory bulb.   总被引:6,自引:0,他引:6  
M Luo  L C Katz 《Neuron》2001,32(6):1165-1179
To define the relationship between glomerular activation patterns and neuronal olfactory responses in the main olfactory bulb, intracellular recordings were combined with optical imaging of intrinsic signals. Response correlation maps (RCMs) were constructed by correlating the fluctuations in membrane potential and firing rate during odorant presentations with patterns of glomerular activation. The RCMs indicated that mitral/tufted cells were excited by activation of a focal region surrounding their principal glomerulus and generally inhibited by activation of more distant regions. However, the structure of the RCMs and the relative contribution of excitatory and inhibitory glomerular input evolved and even changed sign during and after odorant application. These data suggest a dynamic center-surround organization of mitral/tufted cell receptive fields.  相似文献   

8.
To analyze the mechanisms of perception and processing of pheromonal signals in vitro, we previously developed a new culture system for vomeronasal receptor neurons (VRNs), referred to as the vomeronasal pocket (VN pocket). However, very few VRNs were found to express the olfactory marker protein (OMP) and to have protruding microvilli in VN pockets, indicating that these VRNs are immature and that VN pockets are not appropriate for pheromonal recognition. To induce VRN maturation in VN pockets, we here attempted to coculture VN pockets with a VRN target-accessory olfactory bulb (AOB) neurons. At 3 weeks of coculture with AOB neurons, the number of OMP-immunopositive VRNs increased. By electron microscopy, the development of microvilli in VRNs was found to occur coincidentally with OMP expression in vitro. These results indicate that VRN maturation is induced by coculture with AOB neurons. The OMP expression of VRNs was induced not only by AOB neurons but also by neurons of other parts of the central nervous system (CNS). Thus, VRN maturation requires only CNS neurons. Since the maturation of VRNs was not induced in one-well separate cultures, the nonspecific induction of OMP expression by CNS neurons suggests the involvement of a direct contact effect with CNS in VRN maturation.  相似文献   

9.
10.
Responses of secondary neurons of the carp olfactory bulb evoked by electrical stimulation of the olfactory tract were investigated by intracellular recording. In most neurons spike responses were identified as antidromic. Their latent periods varied from 2.5 to 55 msec. Two other types of responses of secondary neurons had constant latent periods: the pseudo-antidromic spike and a fast low-amplitude depolarization potential. It is concluded that these responses are generated by the antidromic spike of a neighboring neuron, connected electrotonically with the recorded neuron.M. V. Lomonosov Moscow State University. Translated from Neirofiziologiya, Vol. 8, No. 5, pp. 490–496, September–October, 1976.  相似文献   

11.
The olfactory bulb contains the first synaptic relay in the olfactory pathway, the sensory system in which odorants are detected enabling these chemical stimuli to be transformed into electrical signals and, ultimately, the perception of odor. Acid-sensing ion channels (ASICs), a family of proton-gated cation channels, are widely expressed in neurons of the central nervous system. However, no direct electrophysiological and pharmacological characterizations of ASICs in olfactory bulb neurons have been described. Using a combination of whole-cell patch-clamp recordings and biochemical and molecular biological analyses, we demonstrated that functional ASICs exist in mouse olfactory bulb mitral/tufted (M/T) neurons and mainly consist of homomeric ASIC1a and heteromeric ASIC1a/2a channels. ASIC activation depolarized cultured M/T neurons and increased their intracellular calcium concentration. Thus, ASIC activation may play an important role in normal olfactory function.  相似文献   

12.
Goats have a well-developed vomeronasal (VN) system and exhibit pheromone-induced reproductive facilitation, but there are no reports on the projection pattern of VN neurons in this species. Rodent, guinea pig and opossum accessory olfactory bulbs (AOBs) have been shown to have a segregated pattern of projection of the VN neurons, which express the two alpha-subtypes of the G-protein, namely Gi2 and Go, to the rostral and caudal regions of the AOB, respectively. In this study we investigated the projection pattern of VN nerve terminals by immunocytochemical staining of the goat vomeronasal organ (VNO) and the AOB with antibodies to Gi2 and Go. Gi2-immunoreactivity was found on the luminal surface of the sensory epithelium of the VNO, and in the VN nerve and glomerular layer throughout the AOB. On the other hand, Go-immunoreactivity was not identified in either the VNO or the VN nerve layer of the AOB. These results indicate that the projection pattern of VN neurons from the VNO to the AOB in the goat is considerably different from that in rodents which show a distinct segregated pattern.  相似文献   

13.
Complex action potentials arising spontaneously or evoked by stimulation of the lateral olfactory tract in secondary neurons of the rat olfactory bulb were recorded. The amplitude and duration of the complex potentials varied depending on synchronization of onset of the individual components (of which more than four were distinguished) and their combination. It is suggested that complex potentials were recorded in cases when the electrode was located in the region of the junction between spike-generating zones (the branching node of the dendrite, the junction of the soma with the dendrites and axon). It is concluded that there are numerous generating zones in the dendrites of the secondary olfactory neurons. Evoked action potentials appeared after the following latent periods: first, about 1 msec; second, about 2 msec; and third, about 3 msec. The results of the analysis showed that the antidromic response appeared after the shortest latent period. These results are evidence of the existence of considerable and varied representation of excitatory synapses in secondary neurons (besides the excitatory input in the olfactory glomeruli).M. B. Lomonosov Moscow State University. Translated from Neirofiziologiya, Vol. 8, No. 6, pp. 575–582, November–December, 1976.  相似文献   

14.
Electrical stimulation of nerve fibers emerging from different positions of the olfactory epithelium was used to determine the receptive fields for 52 olfactory bulb neurons in the hamster. The responses of olfactory bulb neurons were recorded extracellularly with metal-filled micropipettes. Suprathreshold stimuli (500 microA) were applied to each of eight standard epithelial positions spaced approximately 250 microns apart, and the position, or positions, which, when stimulated, produced a response in the bulb were taken as an index of the neuron's receptive field. The results indicate that most bulb neurons have very localized receptive fields limited to only one or two stimulating positions. Furthermore, there was a statistically significant correlation between the location of a neuron's receptive field in the olfactory epithelium and the recording depth of the neuron in the olfactory bulb (Spearman rank correlation coefficient, rs, 0.67, P < 0.001). These findings demonstrate that in the mammalian olfactory system there exists a topographical projection of input from localized regions in the epithelium onto the second-order neurons in the olfactory bulb.  相似文献   

15.
Previously, a coculture system of accessory olfactory bulb (AOB) neurons and vomeronasal (VN) neurons was established for studying the functional roles of AOB neurons in pheromonal signal processing. In this study, the effect of VN neurons on the development of AOB neurons was examined in a coculture system. Spine density was quantitatively measured for various culture periods of 21, 28, 36, and 42 days in vitro. The densities of dendritic spines were lower in the coculture than in single culture for all periods in vitro. Synapse formation on spines was analyzed immunocytochemically using an anti-synaptophysin antibody. The ratio of the density of synaptophysin-immunopositive spine/total spine density was larger in the coculture than in the single culture. The volume of spine head was larger in the coculture than in single culture. These changes were not observed in the coculture in which there was no physical contact between AOB neurons and VN neurons. These observations suggest that synapse formation on the spines of AOB neurons is modified by physical contact with VN neurons.  相似文献   

16.
17.
Spontaneous neuronal activity and concomitant intracellular Ca2+ signaling are abundant during early perinatal development and are well known for their key role in neuronal proliferation, migration, differentiation and wiring. However, much less is known about the in vivo patterns of spontaneous Ca2+ signaling in immature adult-born cells. Here, by using two-photon Ca2+ imaging, we analyzed spontaneous in vivo Ca2+ signaling in adult-born juxtaglomerular cells of the mouse olfactory bulb over the time period of 5 weeks, from the day of their arrival in the glomerular layer till their stable integration into the preexisting neural network. We show that spontaneous Ca2+ transients are ubiquitously present in adult-born cells right after their arrival, require activation of voltage-gated Na+ channels and are little sensitive to isoflurane anesthesia. Interestingly, several parameters of this spontaneous activity, such as the area under the curve, the time spent in the active state as well as the fraction of continuously active cells show a bell-shaped dependence on cell’s age, all peaking in 3–4 weeks old cells. This data firmly document the in vivo presence of spontaneous Ca2+ signaling during the layer-specific maturation of adult-born neurons in the olfactory bulb and motivate further analyses of the functional role(s) of this activity.  相似文献   

18.
Parvalbumin (PV) is found in the olfactory system, including the main olfactory bulb, and is thought to be one of the neuroactive substances in olfaction. Changes in PV immunoreactivity in the olfactory system during aging have not been examined. We investigated such changes in the main olfactory bulb (MOB) of the rat at postnatal month 1 (PM 1), PM 3, PM 6, PM 12 and PM 24. PV-IR neurons were almost completely restricted to the external plexiform layer. At PM 1 there were only a few PV-IR neurons; at PM 3, the number of PV-IR neurons was at its greatest but they were not well developed morphologically. At PM 6, the number of PV-IR neurons was similar to that at PM 3 and they had satellite somata with well-developed processes with many varicosities. By PM 12 the number of neurons and processes had declined, and by PM 24, they had fallen even further and the remaining processes had lost most of their varicosities. We conclude that age-related degeneration of PV-IR neurons in the MOB may reduce calcium buffering and affect olfactory function in senile species.  相似文献   

19.
With the aid of a sheep antiserum against rat brain glutamate decarboxylase (GAD), the endogenous marker for GABAergic neurons, we have labeled immunocytochemically various types of nerve cells in the main olfactory bulb of rats, with and without topic injections of colchicine. The peroxidase-antiperoxidase procedure was applied to floating Vibratome and frozen sections. A large part of the periglomerular cell population and practically all granule cells in the deep layers contain GAD-like immunoreactivity in untreated rats, while tufted and mitral cells (the projection neurons) are unstained. This observation confirms a previous study with a rabbit antiserum against mouse brain GAD, which suggested that GABAergic neurons with presynaptic dendrites contain high somatal concentrations of GAD. We show, however, that immunostaining of granule cell bodies decreases progressively from the internal plexiform layer to the deep portion of the granule cell layer. Many cell processes in the glomeruli are densely stained. They presumably represent synaptic gemmules of the numerous GAD-positive periglomerular cells, which thus could provide initial, inhibitory modulation of the afferent input. In the external plexiform layer immunostaining of the neuropil is substantially denser in the superficial half than in the deep half. This may reflect a corresponding gradient of inhibition related to unequal frequency of occurrence of synaptic gemmules of granule cell dendrites. Alternatively such a graded immunostaining of cell processes could be related to the corresponding gradient in the density of immunostaining of granule cell bodies in the deep layers, in accordance with recent data indicating that superficial and deep granule cells project their ascending dendrites respectively to superficial and deep portions of the external plexiform layer. Furthermore, we have demonstrated the presence of additional classes of GAD-positive neurons, microneurons in the external plexiform layer, small neurons in the periglomerular region, the external plexiform layer, the mitral cell layer, the internal plexiform layer, and medium-size neurons in the granule layer and the white matter. The small- and medium-size GAD-positive neurons appear weakly immunoreactive in untreated rats, but become densely stained after topic colchicine injection. Such cells presumably lack presynaptic dendrites and may correspond to different types of short axon cells demonstrated by the Golgi method.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号